direct product, metabelian, supersoluble, monomial
Aliases: Dic3×3- 1+2, C33.2C12, (C3×C9)⋊7C12, (C9×Dic3)⋊C3, C18.2(C3×S3), (C3×C18).9C6, C9⋊2(C3×Dic3), (C32×C6).6C6, C3⋊(C4×3- 1+2), C32.8(C3×C12), C6.10(S3×C32), (C32×Dic3).C3, C6.(C2×3- 1+2), C2.(S3×3- 1+2), (C3×3- 1+2)⋊3C4, C3.6(C32×Dic3), (C3×Dic3).3C32, C32.10(C3×Dic3), (C2×3- 1+2).7S3, (C6×3- 1+2).3C2, (C3×C6).17(C3×C6), (C3×C6).23(C3×S3), SmallGroup(324,95)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3×3- 1+2
G = < a,b,c,d | a6=c9=d3=1, b2=a3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c4 >
Subgroups: 140 in 70 conjugacy classes, 35 normal (20 characteristic)
C1, C2, C3, C3, C4, C6, C6, C9, C9, C32, C32, Dic3, C12, C18, C18, C3×C6, C3×C6, C3×C9, 3- 1+2, 3- 1+2, C33, C36, C3×Dic3, C3×Dic3, C3×C12, C3×C18, C2×3- 1+2, C2×3- 1+2, C32×C6, C3×3- 1+2, C9×Dic3, C4×3- 1+2, C32×Dic3, C6×3- 1+2, Dic3×3- 1+2
Quotients: C1, C2, C3, C4, S3, C6, C32, Dic3, C12, C3×S3, C3×C6, 3- 1+2, C3×Dic3, C3×C12, C2×3- 1+2, S3×C32, C4×3- 1+2, C32×Dic3, S3×3- 1+2, Dic3×3- 1+2
(1 21 4 24 7 27)(2 22 5 25 8 19)(3 23 6 26 9 20)(10 35 16 32 13 29)(11 36 17 33 14 30)(12 28 18 34 15 31)
(1 15 24 28)(2 16 25 29)(3 17 26 30)(4 18 27 31)(5 10 19 32)(6 11 20 33)(7 12 21 34)(8 13 22 35)(9 14 23 36)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)
(2 8 5)(3 6 9)(10 16 13)(11 14 17)(19 25 22)(20 23 26)(29 35 32)(30 33 36)
G:=sub<Sym(36)| (1,21,4,24,7,27)(2,22,5,25,8,19)(3,23,6,26,9,20)(10,35,16,32,13,29)(11,36,17,33,14,30)(12,28,18,34,15,31), (1,15,24,28)(2,16,25,29)(3,17,26,30)(4,18,27,31)(5,10,19,32)(6,11,20,33)(7,12,21,34)(8,13,22,35)(9,14,23,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36)>;
G:=Group( (1,21,4,24,7,27)(2,22,5,25,8,19)(3,23,6,26,9,20)(10,35,16,32,13,29)(11,36,17,33,14,30)(12,28,18,34,15,31), (1,15,24,28)(2,16,25,29)(3,17,26,30)(4,18,27,31)(5,10,19,32)(6,11,20,33)(7,12,21,34)(8,13,22,35)(9,14,23,36), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36), (2,8,5)(3,6,9)(10,16,13)(11,14,17)(19,25,22)(20,23,26)(29,35,32)(30,33,36) );
G=PermutationGroup([[(1,21,4,24,7,27),(2,22,5,25,8,19),(3,23,6,26,9,20),(10,35,16,32,13,29),(11,36,17,33,14,30),(12,28,18,34,15,31)], [(1,15,24,28),(2,16,25,29),(3,17,26,30),(4,18,27,31),(5,10,19,32),(6,11,20,33),(7,12,21,34),(8,13,22,35),(9,14,23,36)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36)], [(2,8,5),(3,6,9),(10,16,13),(11,14,17),(19,25,22),(20,23,26),(29,35,32),(30,33,36)]])
66 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 9A | ··· | 9F | 9G | ··· | 9L | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 18A | ··· | 18F | 18G | ··· | 18L | 36A | ··· | 36L |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 18 | ··· | 18 | 18 | ··· | 18 | 36 | ··· | 36 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 3 | 3 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 3 | ··· | 3 | 6 | ··· | 6 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 3 | ··· | 3 | 6 | ··· | 6 | 9 | ··· | 9 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | - | ||||||||||||||||
image | C1 | C2 | C3 | C3 | C4 | C6 | C6 | C12 | C12 | S3 | Dic3 | C3×S3 | C3×S3 | C3×Dic3 | C3×Dic3 | 3- 1+2 | C2×3- 1+2 | C4×3- 1+2 | S3×3- 1+2 | Dic3×3- 1+2 |
kernel | Dic3×3- 1+2 | C6×3- 1+2 | C9×Dic3 | C32×Dic3 | C3×3- 1+2 | C3×C18 | C32×C6 | C3×C9 | C33 | C2×3- 1+2 | 3- 1+2 | C18 | C3×C6 | C9 | C32 | Dic3 | C6 | C3 | C2 | C1 |
# reps | 1 | 1 | 6 | 2 | 2 | 6 | 2 | 12 | 4 | 1 | 1 | 6 | 2 | 6 | 2 | 2 | 2 | 4 | 2 | 2 |
Matrix representation of Dic3×3- 1+2 ►in GL5(𝔽37)
0 | 1 | 0 | 0 | 0 |
36 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 6 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
26 | 0 | 0 | 0 | 0 |
0 | 26 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 26 |
0 | 0 | 26 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
10 | 0 | 0 | 0 | 0 |
0 | 10 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 26 | 0 |
0 | 0 | 0 | 0 | 10 |
G:=sub<GL(5,GF(37))| [0,36,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,6,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[26,0,0,0,0,0,26,0,0,0,0,0,0,26,0,0,0,0,0,1,0,0,26,0,0],[10,0,0,0,0,0,10,0,0,0,0,0,1,0,0,0,0,0,26,0,0,0,0,0,10] >;
Dic3×3- 1+2 in GAP, Magma, Sage, TeX
{\rm Dic}_3\times 3_-^{1+2}
% in TeX
G:=Group("Dic3xES-(3,1)");
// GroupNames label
G:=SmallGroup(324,95);
// by ID
G=gap.SmallGroup(324,95);
# by ID
G:=PCGroup([6,-2,-3,-3,-2,-3,-3,108,386,122,7781]);
// Polycyclic
G:=Group<a,b,c,d|a^6=c^9=d^3=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^4>;
// generators/relations