Extensions 1→N→G→Q→1 with N=C2 and Q=S3×C2×C14

Direct product G=N×Q with N=C2 and Q=S3×C2×C14
dρLabelID
S3×C22×C14168S3xC2^2xC14336,226


Non-split extensions G=N.Q with N=C2 and Q=S3×C2×C14
extensionφ:Q→Aut NdρLabelID
C2.1(S3×C2×C14) = S3×C2×C28central extension (φ=1)168C2.1(S3xC2xC14)336,185
C2.2(S3×C2×C14) = Dic3×C2×C14central extension (φ=1)336C2.2(S3xC2xC14)336,192
C2.3(S3×C2×C14) = C14×Dic6central stem extension (φ=1)336C2.3(S3xC2xC14)336,184
C2.4(S3×C2×C14) = C14×D12central stem extension (φ=1)168C2.4(S3xC2xC14)336,186
C2.5(S3×C2×C14) = C7×C4○D12central stem extension (φ=1)1682C2.5(S3xC2xC14)336,187
C2.6(S3×C2×C14) = S3×C7×D4central stem extension (φ=1)844C2.6(S3xC2xC14)336,188
C2.7(S3×C2×C14) = C7×D42S3central stem extension (φ=1)1684C2.7(S3xC2xC14)336,189
C2.8(S3×C2×C14) = S3×C7×Q8central stem extension (φ=1)1684C2.8(S3xC2xC14)336,190
C2.9(S3×C2×C14) = C7×Q83S3central stem extension (φ=1)1684C2.9(S3xC2xC14)336,191
C2.10(S3×C2×C14) = C14×C3⋊D4central stem extension (φ=1)168C2.10(S3xC2xC14)336,193

׿
×
𝔽