extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C9) = C9×Dic9 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 2 | C6.1(S3xC9) | 324,6 |
C6.2(S3×C9) = C32⋊C36 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 6 | C6.2(S3xC9) | 324,7 |
C6.3(S3×C9) = C9⋊C36 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 6 | C6.3(S3xC9) | 324,9 |
C6.4(S3×C9) = D9×C18 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 2 | C6.4(S3xC9) | 324,61 |
C6.5(S3×C9) = C2×C32⋊C18 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 6 | C6.5(S3xC9) | 324,62 |
C6.6(S3×C9) = C2×C9⋊C18 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 36 | 6 | C6.6(S3xC9) | 324,64 |
C6.7(S3×C9) = C9×C3⋊Dic3 | φ: S3×C9/C3×C9 → C2 ⊆ Aut C6 | 108 | | C6.7(S3xC9) | 324,97 |
C6.8(S3×C9) = Dic3×C27 | central extension (φ=1) | 108 | 2 | C6.8(S3xC9) | 324,11 |
C6.9(S3×C9) = S3×C54 | central extension (φ=1) | 108 | 2 | C6.9(S3xC9) | 324,66 |
C6.10(S3×C9) = Dic3×C3×C9 | central extension (φ=1) | 108 | | C6.10(S3xC9) | 324,91 |