Extensions 1→N→G→Q→1 with N=C6 and Q=S3×C9

Direct product G=N×Q with N=C6 and Q=S3×C9
dρLabelID
S3×C3×C18108S3xC3xC18324,137

Semidirect products G=N:Q with N=C6 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C6⋊(S3×C9) = C18×C3⋊S3φ: S3×C9/C3×C9C2 ⊆ Aut C6108C6:(S3xC9)324,143

Non-split extensions G=N.Q with N=C6 and Q=S3×C9
extensionφ:Q→Aut NdρLabelID
C6.1(S3×C9) = C9×Dic9φ: S3×C9/C3×C9C2 ⊆ Aut C6362C6.1(S3xC9)324,6
C6.2(S3×C9) = C32⋊C36φ: S3×C9/C3×C9C2 ⊆ Aut C6366C6.2(S3xC9)324,7
C6.3(S3×C9) = C9⋊C36φ: S3×C9/C3×C9C2 ⊆ Aut C6366C6.3(S3xC9)324,9
C6.4(S3×C9) = D9×C18φ: S3×C9/C3×C9C2 ⊆ Aut C6362C6.4(S3xC9)324,61
C6.5(S3×C9) = C2×C32⋊C18φ: S3×C9/C3×C9C2 ⊆ Aut C6366C6.5(S3xC9)324,62
C6.6(S3×C9) = C2×C9⋊C18φ: S3×C9/C3×C9C2 ⊆ Aut C6366C6.6(S3xC9)324,64
C6.7(S3×C9) = C9×C3⋊Dic3φ: S3×C9/C3×C9C2 ⊆ Aut C6108C6.7(S3xC9)324,97
C6.8(S3×C9) = Dic3×C27central extension (φ=1)1082C6.8(S3xC9)324,11
C6.9(S3×C9) = S3×C54central extension (φ=1)1082C6.9(S3xC9)324,66
C6.10(S3×C9) = Dic3×C3×C9central extension (φ=1)108C6.10(S3xC9)324,91

׿
×
𝔽