Extensions 1→N→G→Q→1 with N=C18 and Q=C3×C6

Direct product G=N×Q with N=C18 and Q=C3×C6
dρLabelID
C3×C6×C18324C3xC6xC18324,151

Semidirect products G=N:Q with N=C18 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C18⋊(C3×C6) = C6×C9⋊C6φ: C3×C6/C3C6 ⊆ Aut C18366C18:(C3xC6)324,140
C182(C3×C6) = C2×C6×3- 1+2φ: C3×C6/C6C3 ⊆ Aut C18108C18:2(C3xC6)324,153
C183(C3×C6) = D9×C3×C6φ: C3×C6/C32C2 ⊆ Aut C18108C18:3(C3xC6)324,136

Non-split extensions G=N.Q with N=C18 and Q=C3×C6
extensionφ:Q→Aut NdρLabelID
C18.(C3×C6) = C3×C9⋊C12φ: C3×C6/C3C6 ⊆ Aut C18366C18.(C3xC6)324,94
C18.2(C3×C6) = C12×3- 1+2φ: C3×C6/C6C3 ⊆ Aut C18108C18.2(C3xC6)324,107
C18.3(C3×C6) = C4×C9○He3φ: C3×C6/C6C3 ⊆ Aut C181083C18.3(C3xC6)324,108
C18.4(C3×C6) = C32×Dic9φ: C3×C6/C32C2 ⊆ Aut C18108C18.4(C3xC6)324,90
C18.5(C3×C6) = C4×C27⋊C3central extension (φ=1)1083C18.5(C3xC6)324,30
C18.6(C3×C6) = C22×C27⋊C3central extension (φ=1)108C18.6(C3xC6)324,85
C18.7(C3×C6) = C22×C9○He3central extension (φ=1)108C18.7(C3xC6)324,154

׿
×
𝔽