Extensions 1→N→G→Q→1 with N=C21 and Q=M4(2)

Direct product G=N×Q with N=C21 and Q=M4(2)
dρLabelID
M4(2)×C211682M4(2)xC21336,110

Semidirect products G=N:Q with N=C21 and Q=M4(2)
extensionφ:Q→Aut NdρLabelID
C211M4(2) = C28.32D6φ: M4(2)/C4C22 ⊆ Aut C211684C21:1M4(2)336,26
C212M4(2) = D6.Dic7φ: M4(2)/C4C22 ⊆ Aut C211684C21:2M4(2)336,27
C213M4(2) = D42.C4φ: M4(2)/C4C22 ⊆ Aut C211684C21:3M4(2)336,28
C214M4(2) = C56⋊S3φ: M4(2)/C8C2 ⊆ Aut C211682C21:4M4(2)336,91
C215M4(2) = C3×C8⋊D7φ: M4(2)/C8C2 ⊆ Aut C211682C21:5M4(2)336,59
C216M4(2) = C7×C8⋊S3φ: M4(2)/C8C2 ⊆ Aut C211682C21:6M4(2)336,75
C217M4(2) = C84.C4φ: M4(2)/C2×C4C2 ⊆ Aut C211682C21:7M4(2)336,96
C218M4(2) = C3×C4.Dic7φ: M4(2)/C2×C4C2 ⊆ Aut C211682C21:8M4(2)336,64
C219M4(2) = C7×C4.Dic3φ: M4(2)/C2×C4C2 ⊆ Aut C211682C21:9M4(2)336,80


׿
×
𝔽