p-group, metacyclic, nilpotent (class 2), monomial
Aliases: 7- 1+2, C49⋊C7, C72.C7, C7.2C72, SmallGroup(343,4)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for 7- 1+2
G = < a,b | a49=b7=1, bab-1=a8 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49)
(2 44 37 30 23 16 9)(3 38 24 10 45 31 17)(4 32 11 39 18 46 25)(5 26 47 19 40 12 33)(6 20 34 48 13 27 41)(7 14 21 28 35 42 49)
G:=sub<Sym(49)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49), (2,44,37,30,23,16,9)(3,38,24,10,45,31,17)(4,32,11,39,18,46,25)(5,26,47,19,40,12,33)(6,20,34,48,13,27,41)(7,14,21,28,35,42,49)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49), (2,44,37,30,23,16,9)(3,38,24,10,45,31,17)(4,32,11,39,18,46,25)(5,26,47,19,40,12,33)(6,20,34,48,13,27,41)(7,14,21,28,35,42,49) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49)], [(2,44,37,30,23,16,9),(3,38,24,10,45,31,17),(4,32,11,39,18,46,25),(5,26,47,19,40,12,33),(6,20,34,48,13,27,41),(7,14,21,28,35,42,49)]])
55 conjugacy classes
class | 1 | 7A | ··· | 7F | 7G | ··· | 7L | 49A | ··· | 49AP |
order | 1 | 7 | ··· | 7 | 7 | ··· | 7 | 49 | ··· | 49 |
size | 1 | 1 | ··· | 1 | 7 | ··· | 7 | 7 | ··· | 7 |
55 irreducible representations
dim | 1 | 1 | 1 | 7 |
type | + | |||
image | C1 | C7 | C7 | 7- 1+2 |
kernel | 7- 1+2 | C49 | C72 | C1 |
# reps | 1 | 42 | 6 | 6 |
Matrix representation of 7- 1+2 ►in GL7(𝔽197)
164 | 0 | 33 | 92 | 122 | 75 | 105 |
0 | 0 | 104 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 178 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 191 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 164 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 114 |
35 | 6 | 161 | 19 | 83 | 93 | 33 |
1 | 33 | 92 | 122 | 75 | 105 | 164 |
0 | 104 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 178 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 191 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 164 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 114 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 36 |
G:=sub<GL(7,GF(197))| [164,0,0,0,0,0,35,0,0,0,0,0,0,6,33,104,0,0,0,0,161,92,0,178,0,0,0,19,122,0,0,191,0,0,83,75,0,0,0,164,0,93,105,0,0,0,0,114,33],[1,0,0,0,0,0,0,33,104,0,0,0,0,0,92,0,178,0,0,0,0,122,0,0,191,0,0,0,75,0,0,0,164,0,0,105,0,0,0,0,114,0,164,0,0,0,0,0,36] >;
7- 1+2 in GAP, Magma, Sage, TeX
7_-^{1+2}
% in TeX
G:=Group("ES-(7,1)");
// GroupNames label
G:=SmallGroup(343,4);
// by ID
G=gap.SmallGroup(343,4);
# by ID
G:=PCGroup([3,-7,7,-7,147,337]);
// Polycyclic
G:=Group<a,b|a^49=b^7=1,b*a*b^-1=a^8>;
// generators/relations
Export