direct product, metacyclic, nilpotent (class 2), monomial, 5-elementary
Aliases: C3×5- 1+2, C75⋊C5, C25⋊C15, C52.C15, C15.2C52, (C5×C15).C5, C5.2(C5×C15), SmallGroup(375,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C5 — C52 — 5- 1+2 — C3×5- 1+2 |
Generators and relations for C3×5- 1+2
G = < a,b,c | a3=b25=c5=1, ab=ba, ac=ca, cbc-1=b6 >
(1 65 50)(2 66 26)(3 67 27)(4 68 28)(5 69 29)(6 70 30)(7 71 31)(8 72 32)(9 73 33)(10 74 34)(11 75 35)(12 51 36)(13 52 37)(14 53 38)(15 54 39)(16 55 40)(17 56 41)(18 57 42)(19 58 43)(20 59 44)(21 60 45)(22 61 46)(23 62 47)(24 63 48)(25 64 49)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)
(1 6 11 16 21)(3 23 18 13 8)(4 19 9 24 14)(5 15 25 10 20)(27 47 42 37 32)(28 43 33 48 38)(29 39 49 34 44)(30 35 40 45 50)(52 72 67 62 57)(53 68 58 73 63)(54 64 74 59 69)(55 60 65 70 75)
G:=sub<Sym(75)| (1,65,50)(2,66,26)(3,67,27)(4,68,28)(5,69,29)(6,70,30)(7,71,31)(8,72,32)(9,73,33)(10,74,34)(11,75,35)(12,51,36)(13,52,37)(14,53,38)(15,54,39)(16,55,40)(17,56,41)(18,57,42)(19,58,43)(20,59,44)(21,60,45)(22,61,46)(23,62,47)(24,63,48)(25,64,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)(52,72,67,62,57)(53,68,58,73,63)(54,64,74,59,69)(55,60,65,70,75)>;
G:=Group( (1,65,50)(2,66,26)(3,67,27)(4,68,28)(5,69,29)(6,70,30)(7,71,31)(8,72,32)(9,73,33)(10,74,34)(11,75,35)(12,51,36)(13,52,37)(14,53,38)(15,54,39)(16,55,40)(17,56,41)(18,57,42)(19,58,43)(20,59,44)(21,60,45)(22,61,46)(23,62,47)(24,63,48)(25,64,49), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75), (1,6,11,16,21)(3,23,18,13,8)(4,19,9,24,14)(5,15,25,10,20)(27,47,42,37,32)(28,43,33,48,38)(29,39,49,34,44)(30,35,40,45,50)(52,72,67,62,57)(53,68,58,73,63)(54,64,74,59,69)(55,60,65,70,75) );
G=PermutationGroup([[(1,65,50),(2,66,26),(3,67,27),(4,68,28),(5,69,29),(6,70,30),(7,71,31),(8,72,32),(9,73,33),(10,74,34),(11,75,35),(12,51,36),(13,52,37),(14,53,38),(15,54,39),(16,55,40),(17,56,41),(18,57,42),(19,58,43),(20,59,44),(21,60,45),(22,61,46),(23,62,47),(24,63,48),(25,64,49)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)], [(1,6,11,16,21),(3,23,18,13,8),(4,19,9,24,14),(5,15,25,10,20),(27,47,42,37,32),(28,43,33,48,38),(29,39,49,34,44),(30,35,40,45,50),(52,72,67,62,57),(53,68,58,73,63),(54,64,74,59,69),(55,60,65,70,75)]])
87 conjugacy classes
class | 1 | 3A | 3B | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 15A | ··· | 15H | 15I | ··· | 15P | 25A | ··· | 25T | 75A | ··· | 75AN |
order | 1 | 3 | 3 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 15 | ··· | 15 | 15 | ··· | 15 | 25 | ··· | 25 | 75 | ··· | 75 |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 1 | ··· | 1 | 5 | ··· | 5 | 5 | ··· | 5 | 5 | ··· | 5 |
87 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 5 | 5 |
type | + | |||||||
image | C1 | C3 | C5 | C5 | C15 | C15 | 5- 1+2 | C3×5- 1+2 |
kernel | C3×5- 1+2 | 5- 1+2 | C75 | C5×C15 | C25 | C52 | C3 | C1 |
# reps | 1 | 2 | 20 | 4 | 40 | 8 | 4 | 8 |
Matrix representation of C3×5- 1+2 ►in GL5(𝔽151)
32 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 32 |
143 | 59 | 0 | 0 | 142 |
87 | 0 | 1 | 0 | 0 |
92 | 0 | 0 | 64 | 20 |
132 | 0 | 0 | 0 | 132 |
7 | 0 | 0 | 0 | 8 |
19 | 0 | 0 | 0 | 150 |
0 | 59 | 0 | 0 | 142 |
0 | 0 | 64 | 0 | 78 |
0 | 0 | 0 | 8 | 19 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(151))| [32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32,0,0,0,0,0,32],[143,87,92,132,7,59,0,0,0,0,0,1,0,0,0,0,0,64,0,0,142,0,20,132,8],[19,0,0,0,0,0,59,0,0,0,0,0,64,0,0,0,0,0,8,0,150,142,78,19,1] >;
C3×5- 1+2 in GAP, Magma, Sage, TeX
C_3\times 5_-^{1+2}
% in TeX
G:=Group("C3xES-(5,1)");
// GroupNames label
G:=SmallGroup(375,5);
// by ID
G=gap.SmallGroup(375,5);
# by ID
G:=PCGroup([4,-3,-5,-5,-5,205,1266]);
// Polycyclic
G:=Group<a,b,c|a^3=b^25=c^5=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations
Export