p-group, metacyclic, nilpotent (class 2), monomial
Aliases: 5- 1+2, C25⋊C5, C52.C5, C5.2C52, 5-Sylow(Sz(32).5), SmallGroup(125,4)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for 5- 1+2
G = < a,b | a25=b5=1, bab-1=a6 >
Character table of 5- 1+2
class | 1 | 5A | 5B | 5C | 5D | 5E | 5F | 5G | 5H | 25A | 25B | 25C | 25D | 25E | 25F | 25G | 25H | 25I | 25J | 25K | 25L | 25M | 25N | 25O | 25P | 25Q | 25R | 25S | 25T | |
size | 1 | 1 | 1 | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ53 | ζ5 | ζ5 | ζ52 | 1 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | linear of order 5 |
ρ3 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | 1 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ53 | ζ54 | ζ5 | ζ5 | ζ52 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ52 | ζ53 | ζ54 | 1 | linear of order 5 |
ρ4 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ53 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | 1 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | linear of order 5 |
ρ5 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ54 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | 1 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | linear of order 5 |
ρ6 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ54 | ζ53 | ζ53 | ζ5 | 1 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | linear of order 5 |
ρ7 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | 1 | ζ53 | ζ5 | ζ54 | linear of order 5 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ52 | ζ52 | ζ54 | ζ52 | ζ52 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | linear of order 5 |
ρ9 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | 1 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ54 | ζ52 | ζ53 | ζ53 | ζ5 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ5 | ζ54 | ζ52 | 1 | linear of order 5 |
ρ10 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ53 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | 1 | ζ52 | ζ54 | ζ5 | linear of order 5 |
ρ11 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ52 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ53 | 1 | ζ5 | ζ54 | ζ5 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ53 | 1 | ζ52 | ζ54 | linear of order 5 |
ρ12 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ53 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ52 | 1 | ζ54 | ζ5 | ζ54 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | ζ52 | 1 | ζ53 | ζ5 | linear of order 5 |
ρ13 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ5 | ζ52 | ζ52 | ζ54 | 1 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | linear of order 5 |
ρ14 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ5 | ζ5 | ζ52 | ζ5 | ζ5 | ζ53 | ζ53 | ζ53 | ζ53 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | linear of order 5 |
ρ15 | 1 | 1 | 1 | 1 | 1 | ζ52 | ζ53 | ζ5 | ζ54 | ζ5 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | 1 | ζ53 | 1 | ζ54 | ζ52 | 1 | ζ53 | ζ5 | ζ54 | ζ52 | ζ53 | ζ5 | ζ54 | ζ52 | linear of order 5 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | ζ5 | ζ54 | ζ54 | ζ53 | ζ54 | ζ54 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ53 | ζ53 | ζ53 | ζ53 | linear of order 5 |
ρ17 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ52 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | 1 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ53 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | linear of order 5 |
ρ18 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ52 | ζ54 | ζ54 | ζ53 | 1 | ζ5 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | linear of order 5 |
ρ19 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ54 | ζ5 | 1 | ζ54 | ζ5 | ζ53 | 1 | ζ52 | ζ5 | ζ53 | ζ52 | ζ52 | ζ54 | ζ53 | 1 | ζ52 | ζ54 | ζ5 | ζ54 | ζ5 | ζ53 | 1 | linear of order 5 |
ρ20 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | ζ54 | 1 | ζ53 | ζ52 | ζ53 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ54 | 1 | ζ5 | ζ52 | linear of order 5 |
ρ21 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | ζ5 | 1 | ζ52 | ζ53 | ζ52 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ5 | 1 | ζ54 | ζ53 | linear of order 5 |
ρ22 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | ζ5 | ζ52 | ζ5 | 1 | ζ54 | ζ53 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ54 | ζ53 | ζ52 | ζ5 | 1 | 1 | ζ54 | ζ53 | ζ52 | linear of order 5 |
ρ23 | 1 | 1 | 1 | 1 | 1 | ζ54 | ζ5 | ζ52 | ζ53 | ζ54 | ζ53 | ζ54 | 1 | ζ5 | ζ52 | ζ52 | ζ53 | ζ54 | 1 | ζ5 | ζ5 | ζ52 | ζ53 | ζ54 | 1 | 1 | ζ5 | ζ52 | ζ53 | linear of order 5 |
ρ24 | 1 | 1 | 1 | 1 | 1 | ζ5 | ζ54 | ζ53 | ζ52 | 1 | ζ53 | ζ52 | ζ5 | 1 | ζ54 | ζ52 | ζ5 | ζ54 | ζ54 | ζ53 | ζ5 | 1 | ζ54 | ζ53 | ζ52 | ζ53 | ζ52 | ζ5 | 1 | linear of order 5 |
ρ25 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ζ53 | ζ52 | ζ52 | ζ52 | ζ52 | ζ52 | ζ53 | ζ53 | ζ5 | ζ53 | ζ53 | ζ54 | ζ54 | ζ54 | ζ54 | ζ54 | ζ5 | ζ5 | ζ5 | ζ5 | linear of order 5 |
ρ26 | 5 | 5ζ52 | 5ζ5 | 5ζ54 | 5ζ53 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 5 | 5ζ5 | 5ζ53 | 5ζ52 | 5ζ54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 5 | 5ζ54 | 5ζ52 | 5ζ53 | 5ζ5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 5 | 5ζ53 | 5ζ54 | 5ζ5 | 5ζ52 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)
(2 22 17 12 7)(3 18 8 23 13)(4 14 24 9 19)(5 10 15 20 25)
G:=sub<Sym(25)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,22,17,12,7)(3,18,8,23,13)(4,14,24,9,19)(5,10,15,20,25)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25), (2,22,17,12,7)(3,18,8,23,13)(4,14,24,9,19)(5,10,15,20,25) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)], [(2,22,17,12,7),(3,18,8,23,13),(4,14,24,9,19),(5,10,15,20,25)]])
G:=TransitiveGroup(25,13);
5- 1+2 is a maximal subgroup of
C25⋊C10
Matrix representation of 5- 1+2 ►in GL5(𝔽101)
95 | 86 | 0 | 0 | 0 |
36 | 6 | 87 | 0 | 0 |
81 | 65 | 0 | 95 | 0 |
20 | 14 | 0 | 0 | 84 |
0 | 17 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
95 | 87 | 0 | 0 | 0 |
37 | 0 | 95 | 0 | 0 |
64 | 0 | 0 | 84 | 0 |
6 | 0 | 0 | 0 | 36 |
G:=sub<GL(5,GF(101))| [95,36,81,20,0,86,6,65,14,17,0,87,0,0,0,0,0,95,0,0,0,0,0,84,0],[1,95,37,64,6,0,87,0,0,0,0,0,95,0,0,0,0,0,84,0,0,0,0,0,36] >;
5- 1+2 in GAP, Magma, Sage, TeX
5_-^{1+2}
% in TeX
G:=Group("ES-(5,1)");
// GroupNames label
G:=SmallGroup(125,4);
// by ID
G=gap.SmallGroup(125,4);
# by ID
G:=PCGroup([3,-5,5,-5,75,181]);
// Polycyclic
G:=Group<a,b|a^25=b^5=1,b*a*b^-1=a^6>;
// generators/relations
Export
Subgroup lattice of 5- 1+2 in TeX
Character table of 5- 1+2 in TeX