Copied to
clipboard

G = C6×A5order 360 = 23·32·5

Direct product of C6 and A5

direct product, non-abelian, not soluble, A-group

Aliases: C6×A5, SmallGroup(360,122)

Series: ChiefDerived Lower central Upper central

C1C3C6 — C6×A5
A5 — C6×A5
A5 — C6×A5
C1C6

15C2
15C2
10C3
20C3
6C5
5C22
15C22
15C22
10S3
10S3
10C6
15C6
15C6
20C6
10C32
6D5
6C10
6D5
6C15
5C23
5A4
5A4
5C2×C6
5A4
10D6
15C2×C6
15C2×C6
10C3×C6
10C3×S3
10C3×S3
6D10
6C30
6C3×D5
6C3×D5
5C22×C6
5C2×A4
5C2×A4
5C2×A4
5C3×A4
10S3×C6
6C6×D5
5C6×A4

Character table of C6×A5

 class 12A2B2C3A3B3C3D3E5A5B6A6B6C6D6E6F6G6H6I10A10B15A15B15C15D30A30B30C30D
 size 111515112020201212111515151520202012121212121212121212
ρ1111111111111111111111111111111    trivial
ρ21-1-111111111-1-1-1-111-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ31-1-11ζ32ζ3ζ32ζ3111ζ6ζ65ζ65ζ6ζ3ζ32ζ65ζ6-1-1-1ζ3ζ32ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ41111ζ3ζ32ζ3ζ32111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ3111ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ51111ζ32ζ3ζ32ζ3111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ32111ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ61-1-11ζ3ζ32ζ3ζ32111ζ65ζ6ζ6ζ65ζ32ζ3ζ6ζ65-1-1-1ζ32ζ3ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ73-31-1330001+5/21-5/2-3-311-1-1000-1-5/2-1+5/21-5/21+5/21+5/21-5/2-1+5/2-1-5/2-1+5/2-1-5/2    orthogonal lifted from C2×A5
ρ833-1-1330001+5/21-5/233-1-1-1-10001+5/21-5/21-5/21+5/21+5/21-5/21-5/21+5/21-5/21+5/2    orthogonal lifted from A5
ρ93-31-1330001-5/21+5/2-3-311-1-1000-1+5/2-1-5/21+5/21-5/21-5/21+5/2-1-5/2-1+5/2-1-5/2-1+5/2    orthogonal lifted from C2×A5
ρ1033-1-1330001-5/21+5/233-1-1-1-10001-5/21+5/21+5/21-5/21-5/21+5/21+5/21-5/21+5/21-5/2    orthogonal lifted from A5
ρ1133-1-1-3-3-3/2-3+3-3/20001+5/21-5/2-3-3-3/2-3+3-3/2ζ65ζ6ζ65ζ60001+5/21-5/23ζ543ζ532ζ5332ζ523ζ533ζ5232ζ5432ζ53ζ543ζ53ζ533ζ5232ζ5432ζ532ζ5332ζ52    complex lifted from C3×A5
ρ1233-1-1-3+3-3/2-3-3-3/20001+5/21-5/2-3+3-3/2-3-3-3/2ζ6ζ65ζ6ζ650001+5/21-5/232ζ5432ζ53ζ533ζ5232ζ5332ζ523ζ543ζ532ζ5432ζ532ζ5332ζ523ζ543ζ53ζ533ζ52    complex lifted from C3×A5
ρ1333-1-1-3+3-3/2-3-3-3/20001-5/21+5/2-3+3-3/2-3-3-3/2ζ6ζ65ζ6ζ650001-5/21+5/232ζ5332ζ523ζ543ζ532ζ5432ζ53ζ533ζ5232ζ5332ζ5232ζ5432ζ53ζ533ζ523ζ543ζ5    complex lifted from C3×A5
ρ1433-1-1-3-3-3/2-3+3-3/20001-5/21+5/2-3-3-3/2-3+3-3/2ζ65ζ6ζ65ζ60001-5/21+5/23ζ533ζ5232ζ5432ζ53ζ543ζ532ζ5332ζ523ζ533ζ523ζ543ζ532ζ5332ζ5232ζ5432ζ5    complex lifted from C3×A5
ρ153-31-1-3+3-3/2-3-3-3/20001+5/21-5/23-3-3/23+3-3/2ζ32ζ3ζ6ζ65000-1-5/2-1+5/232ζ5432ζ53ζ533ζ5232ζ5332ζ523ζ543ζ5ζ32ζ5432ζ5ζ32ζ5332ζ52ζ3ζ543ζ5ζ3ζ533ζ52    complex faithful
ρ163-31-1-3+3-3/2-3-3-3/20001-5/21+5/23-3-3/23+3-3/2ζ32ζ3ζ6ζ65000-1+5/2-1-5/232ζ5332ζ523ζ543ζ532ζ5432ζ53ζ533ζ52ζ32ζ5332ζ52ζ32ζ5432ζ5ζ3ζ533ζ52ζ3ζ543ζ5    complex faithful
ρ173-31-1-3-3-3/2-3+3-3/20001-5/21+5/23+3-3/23-3-3/2ζ3ζ32ζ65ζ6000-1+5/2-1-5/23ζ533ζ5232ζ5432ζ53ζ543ζ532ζ5332ζ52ζ3ζ533ζ52ζ3ζ543ζ5ζ32ζ5332ζ52ζ32ζ5432ζ5    complex faithful
ρ183-31-1-3-3-3/2-3+3-3/20001+5/21-5/23+3-3/23-3-3/2ζ3ζ32ζ65ζ6000-1-5/2-1+5/23ζ543ζ532ζ5332ζ523ζ533ζ5232ζ5432ζ5ζ3ζ543ζ5ζ3ζ533ζ52ζ32ζ5432ζ5ζ32ζ5332ζ52    complex faithful
ρ194-40044111-1-1-4-40000-1-1-111-1-1-1-11111    orthogonal lifted from C2×A5
ρ20440044111-1-1440000111-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from A5
ρ214400-2-2-3-2+2-3ζ32ζ31-1-1-2-2-3-2+2-30000ζ3ζ321-1-1ζ65ζ6ζ65ζ6ζ65ζ65ζ6ζ6    complex lifted from C3×A5
ρ224-400-2-2-3-2+2-3ζ32ζ31-1-12+2-32-2-30000ζ65ζ6-111ζ65ζ6ζ65ζ6ζ3ζ3ζ32ζ32    complex faithful
ρ234-400-2+2-3-2-2-3ζ3ζ321-1-12-2-32+2-30000ζ6ζ65-111ζ6ζ65ζ6ζ65ζ32ζ32ζ3ζ3    complex faithful
ρ244400-2+2-3-2-2-3ζ3ζ321-1-1-2+2-3-2-2-30000ζ32ζ31-1-1ζ6ζ65ζ6ζ65ζ6ζ6ζ65ζ65    complex lifted from C3×A5
ρ255-5-1155-1-1-100-5-5-1-1111110000000000    orthogonal lifted from C2×A5
ρ26551155-1-1-100551111-1-1-10000000000    orthogonal lifted from A5
ρ275511-5+5-3/2-5-5-3/2ζ65ζ6-100-5+5-3/2-5-5-3/2ζ32ζ3ζ32ζ3ζ6ζ65-10000000000    complex lifted from C3×A5
ρ285-5-11-5-5-3/2-5+5-3/2ζ6ζ65-1005+5-3/25-5-3/2ζ65ζ6ζ3ζ32ζ3ζ3210000000000    complex faithful
ρ295-5-11-5+5-3/2-5-5-3/2ζ65ζ6-1005-5-3/25+5-3/2ζ6ζ65ζ32ζ3ζ32ζ310000000000    complex faithful
ρ305511-5-5-3/2-5+5-3/2ζ6ζ65-100-5-5-3/2-5+5-3/2ζ3ζ32ζ3ζ32ζ65ζ6-10000000000    complex lifted from C3×A5

Permutation representations of C6×A5
On 30 points - transitive group 30T87
Generators in S30
(1 2)(3 4)(5 6)(7 8)(9 10)(11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 3 20 2 4 23)(5 17 7 6 14 8)(9 12 29 10 11 26)(13 28 22 16 25 19)(15 30 24 18 27 21)

G:=sub<Sym(30)| (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,3,20,2,4,23)(5,17,7,6,14,8)(9,12,29,10,11,26)(13,28,22,16,25,19)(15,30,24,18,27,21)>;

G:=Group( (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,3,20,2,4,23)(5,17,7,6,14,8)(9,12,29,10,11,26)(13,28,22,16,25,19)(15,30,24,18,27,21) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,3,20,2,4,23),(5,17,7,6,14,8),(9,12,29,10,11,26),(13,28,22,16,25,19),(15,30,24,18,27,21)]])

G:=TransitiveGroup(30,87);

On 30 points - transitive group 30T92
Generators in S30
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)
(1 26 19 4 29 22)(2 25 9 5 28 12)(3 30 16 6 27 13)(7 23 17 10 20 14)(8 11)(15 18)(21 24)

G:=sub<Sym(30)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,26,19,4,29,22)(2,25,9,5,28,12)(3,30,16,6,27,13)(7,23,17,10,20,14)(8,11)(15,18)(21,24)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30), (1,26,19,4,29,22)(2,25,9,5,28,12)(3,30,16,6,27,13)(7,23,17,10,20,14)(8,11)(15,18)(21,24) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30)], [(1,26,19,4,29,22),(2,25,9,5,28,12),(3,30,16,6,27,13),(7,23,17,10,20,14),(8,11),(15,18),(21,24)]])

G:=TransitiveGroup(30,92);

Matrix representation of C6×A5 in GL4(𝔽7) generated by

4526
6665
5200
6303
,
1606
3326
2352
5451
G:=sub<GL(4,GF(7))| [4,6,5,6,5,6,2,3,2,6,0,0,6,5,0,3],[1,3,2,5,6,3,3,4,0,2,5,5,6,6,2,1] >;

C6×A5 in GAP, Magma, Sage, TeX

C_6\times A_5
% in TeX

G:=Group("C6xA5");
// GroupNames label

G:=SmallGroup(360,122);
// by ID

G=gap.SmallGroup(360,122);
# by ID

Export

Subgroup lattice of C6×A5 in TeX
Character table of C6×A5 in TeX

׿
×
𝔽