direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D178, C2×D89, C178⋊C2, C89⋊C22, sometimes denoted D356 or Dih178 or Dih356, SmallGroup(356,4)
Series: Derived ►Chief ►Lower central ►Upper central
C89 — D178 |
Generators and relations for D178
G = < a,b | a178=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178)
(1 178)(2 177)(3 176)(4 175)(5 174)(6 173)(7 172)(8 171)(9 170)(10 169)(11 168)(12 167)(13 166)(14 165)(15 164)(16 163)(17 162)(18 161)(19 160)(20 159)(21 158)(22 157)(23 156)(24 155)(25 154)(26 153)(27 152)(28 151)(29 150)(30 149)(31 148)(32 147)(33 146)(34 145)(35 144)(36 143)(37 142)(38 141)(39 140)(40 139)(41 138)(42 137)(43 136)(44 135)(45 134)(46 133)(47 132)(48 131)(49 130)(50 129)(51 128)(52 127)(53 126)(54 125)(55 124)(56 123)(57 122)(58 121)(59 120)(60 119)(61 118)(62 117)(63 116)(64 115)(65 114)(66 113)(67 112)(68 111)(69 110)(70 109)(71 108)(72 107)(73 106)(74 105)(75 104)(76 103)(77 102)(78 101)(79 100)(80 99)(81 98)(82 97)(83 96)(84 95)(85 94)(86 93)(87 92)(88 91)(89 90)
G:=sub<Sym(178)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178), (1,178)(2,177)(3,176)(4,175)(5,174)(6,173)(7,172)(8,171)(9,170)(10,169)(11,168)(12,167)(13,166)(14,165)(15,164)(16,163)(17,162)(18,161)(19,160)(20,159)(21,158)(22,157)(23,156)(24,155)(25,154)(26,153)(27,152)(28,151)(29,150)(30,149)(31,148)(32,147)(33,146)(34,145)(35,144)(36,143)(37,142)(38,141)(39,140)(40,139)(41,138)(42,137)(43,136)(44,135)(45,134)(46,133)(47,132)(48,131)(49,130)(50,129)(51,128)(52,127)(53,126)(54,125)(55,124)(56,123)(57,122)(58,121)(59,120)(60,119)(61,118)(62,117)(63,116)(64,115)(65,114)(66,113)(67,112)(68,111)(69,110)(70,109)(71,108)(72,107)(73,106)(74,105)(75,104)(76,103)(77,102)(78,101)(79,100)(80,99)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178), (1,178)(2,177)(3,176)(4,175)(5,174)(6,173)(7,172)(8,171)(9,170)(10,169)(11,168)(12,167)(13,166)(14,165)(15,164)(16,163)(17,162)(18,161)(19,160)(20,159)(21,158)(22,157)(23,156)(24,155)(25,154)(26,153)(27,152)(28,151)(29,150)(30,149)(31,148)(32,147)(33,146)(34,145)(35,144)(36,143)(37,142)(38,141)(39,140)(40,139)(41,138)(42,137)(43,136)(44,135)(45,134)(46,133)(47,132)(48,131)(49,130)(50,129)(51,128)(52,127)(53,126)(54,125)(55,124)(56,123)(57,122)(58,121)(59,120)(60,119)(61,118)(62,117)(63,116)(64,115)(65,114)(66,113)(67,112)(68,111)(69,110)(70,109)(71,108)(72,107)(73,106)(74,105)(75,104)(76,103)(77,102)(78,101)(79,100)(80,99)(81,98)(82,97)(83,96)(84,95)(85,94)(86,93)(87,92)(88,91)(89,90) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178)], [(1,178),(2,177),(3,176),(4,175),(5,174),(6,173),(7,172),(8,171),(9,170),(10,169),(11,168),(12,167),(13,166),(14,165),(15,164),(16,163),(17,162),(18,161),(19,160),(20,159),(21,158),(22,157),(23,156),(24,155),(25,154),(26,153),(27,152),(28,151),(29,150),(30,149),(31,148),(32,147),(33,146),(34,145),(35,144),(36,143),(37,142),(38,141),(39,140),(40,139),(41,138),(42,137),(43,136),(44,135),(45,134),(46,133),(47,132),(48,131),(49,130),(50,129),(51,128),(52,127),(53,126),(54,125),(55,124),(56,123),(57,122),(58,121),(59,120),(60,119),(61,118),(62,117),(63,116),(64,115),(65,114),(66,113),(67,112),(68,111),(69,110),(70,109),(71,108),(72,107),(73,106),(74,105),(75,104),(76,103),(77,102),(78,101),(79,100),(80,99),(81,98),(82,97),(83,96),(84,95),(85,94),(86,93),(87,92),(88,91),(89,90)]])
92 conjugacy classes
class | 1 | 2A | 2B | 2C | 89A | ··· | 89AR | 178A | ··· | 178AR |
order | 1 | 2 | 2 | 2 | 89 | ··· | 89 | 178 | ··· | 178 |
size | 1 | 1 | 89 | 89 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + |
image | C1 | C2 | C2 | D89 | D178 |
kernel | D178 | D89 | C178 | C2 | C1 |
# reps | 1 | 2 | 1 | 44 | 44 |
Matrix representation of D178 ►in GL2(𝔽179) generated by
57 | 176 |
3 | 3 |
57 | 176 |
128 | 122 |
G:=sub<GL(2,GF(179))| [57,3,176,3],[57,128,176,122] >;
D178 in GAP, Magma, Sage, TeX
D_{178}
% in TeX
G:=Group("D178");
// GroupNames label
G:=SmallGroup(356,4);
// by ID
G=gap.SmallGroup(356,4);
# by ID
G:=PCGroup([3,-2,-2,-89,3170]);
// Polycyclic
G:=Group<a,b|a^178=b^2=1,b*a*b=a^-1>;
// generators/relations
Export