metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D179, C179⋊C2, sometimes denoted D358 or Dih179 or Dih358, SmallGroup(358,1)
Series: Derived ►Chief ►Lower central ►Upper central
C179 — D179 |
Generators and relations for D179
G = < a,b | a179=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179)
(1 179)(2 178)(3 177)(4 176)(5 175)(6 174)(7 173)(8 172)(9 171)(10 170)(11 169)(12 168)(13 167)(14 166)(15 165)(16 164)(17 163)(18 162)(19 161)(20 160)(21 159)(22 158)(23 157)(24 156)(25 155)(26 154)(27 153)(28 152)(29 151)(30 150)(31 149)(32 148)(33 147)(34 146)(35 145)(36 144)(37 143)(38 142)(39 141)(40 140)(41 139)(42 138)(43 137)(44 136)(45 135)(46 134)(47 133)(48 132)(49 131)(50 130)(51 129)(52 128)(53 127)(54 126)(55 125)(56 124)(57 123)(58 122)(59 121)(60 120)(61 119)(62 118)(63 117)(64 116)(65 115)(66 114)(67 113)(68 112)(69 111)(70 110)(71 109)(72 108)(73 107)(74 106)(75 105)(76 104)(77 103)(78 102)(79 101)(80 100)(81 99)(82 98)(83 97)(84 96)(85 95)(86 94)(87 93)(88 92)(89 91)
G:=sub<Sym(179)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179), (1,179)(2,178)(3,177)(4,176)(5,175)(6,174)(7,173)(8,172)(9,171)(10,170)(11,169)(12,168)(13,167)(14,166)(15,165)(16,164)(17,163)(18,162)(19,161)(20,160)(21,159)(22,158)(23,157)(24,156)(25,155)(26,154)(27,153)(28,152)(29,151)(30,150)(31,149)(32,148)(33,147)(34,146)(35,145)(36,144)(37,143)(38,142)(39,141)(40,140)(41,139)(42,138)(43,137)(44,136)(45,135)(46,134)(47,133)(48,132)(49,131)(50,130)(51,129)(52,128)(53,127)(54,126)(55,125)(56,124)(57,123)(58,122)(59,121)(60,120)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179), (1,179)(2,178)(3,177)(4,176)(5,175)(6,174)(7,173)(8,172)(9,171)(10,170)(11,169)(12,168)(13,167)(14,166)(15,165)(16,164)(17,163)(18,162)(19,161)(20,160)(21,159)(22,158)(23,157)(24,156)(25,155)(26,154)(27,153)(28,152)(29,151)(30,150)(31,149)(32,148)(33,147)(34,146)(35,145)(36,144)(37,143)(38,142)(39,141)(40,140)(41,139)(42,138)(43,137)(44,136)(45,135)(46,134)(47,133)(48,132)(49,131)(50,130)(51,129)(52,128)(53,127)(54,126)(55,125)(56,124)(57,123)(58,122)(59,121)(60,120)(61,119)(62,118)(63,117)(64,116)(65,115)(66,114)(67,113)(68,112)(69,111)(70,110)(71,109)(72,108)(73,107)(74,106)(75,105)(76,104)(77,103)(78,102)(79,101)(80,100)(81,99)(82,98)(83,97)(84,96)(85,95)(86,94)(87,93)(88,92)(89,91) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179)], [(1,179),(2,178),(3,177),(4,176),(5,175),(6,174),(7,173),(8,172),(9,171),(10,170),(11,169),(12,168),(13,167),(14,166),(15,165),(16,164),(17,163),(18,162),(19,161),(20,160),(21,159),(22,158),(23,157),(24,156),(25,155),(26,154),(27,153),(28,152),(29,151),(30,150),(31,149),(32,148),(33,147),(34,146),(35,145),(36,144),(37,143),(38,142),(39,141),(40,140),(41,139),(42,138),(43,137),(44,136),(45,135),(46,134),(47,133),(48,132),(49,131),(50,130),(51,129),(52,128),(53,127),(54,126),(55,125),(56,124),(57,123),(58,122),(59,121),(60,120),(61,119),(62,118),(63,117),(64,116),(65,115),(66,114),(67,113),(68,112),(69,111),(70,110),(71,109),(72,108),(73,107),(74,106),(75,105),(76,104),(77,103),(78,102),(79,101),(80,100),(81,99),(82,98),(83,97),(84,96),(85,95),(86,94),(87,93),(88,92),(89,91)]])
91 conjugacy classes
class | 1 | 2 | 179A | ··· | 179CK |
order | 1 | 2 | 179 | ··· | 179 |
size | 1 | 179 | 2 | ··· | 2 |
91 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D179 |
kernel | D179 | C179 | C1 |
# reps | 1 | 1 | 89 |
Matrix representation of D179 ►in GL2(𝔽359) generated by
34 | 358 |
1 | 0 |
34 | 358 |
78 | 325 |
G:=sub<GL(2,GF(359))| [34,1,358,0],[34,78,358,325] >;
D179 in GAP, Magma, Sage, TeX
D_{179}
% in TeX
G:=Group("D179");
// GroupNames label
G:=SmallGroup(358,1);
// by ID
G=gap.SmallGroup(358,1);
# by ID
G:=PCGroup([2,-2,-179,1425]);
// Polycyclic
G:=Group<a,b|a^179=b^2=1,b*a*b=a^-1>;
// generators/relations
Export