Copied to
clipboard

G = D183order 366 = 2·3·61

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D183, C61⋊S3, C3⋊D61, C1831C2, sometimes denoted D366 or Dih183 or Dih366, SmallGroup(366,5)

Series: Derived Chief Lower central Upper central

C1C183 — D183
C1C61C183 — D183
C183 — D183
C1

Generators and relations for D183
 G = < a,b | a183=b2=1, bab=a-1 >

183C2
61S3
3D61

Smallest permutation representation of D183
On 183 points
Generators in S183
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183)
(1 183)(2 182)(3 181)(4 180)(5 179)(6 178)(7 177)(8 176)(9 175)(10 174)(11 173)(12 172)(13 171)(14 170)(15 169)(16 168)(17 167)(18 166)(19 165)(20 164)(21 163)(22 162)(23 161)(24 160)(25 159)(26 158)(27 157)(28 156)(29 155)(30 154)(31 153)(32 152)(33 151)(34 150)(35 149)(36 148)(37 147)(38 146)(39 145)(40 144)(41 143)(42 142)(43 141)(44 140)(45 139)(46 138)(47 137)(48 136)(49 135)(50 134)(51 133)(52 132)(53 131)(54 130)(55 129)(56 128)(57 127)(58 126)(59 125)(60 124)(61 123)(62 122)(63 121)(64 120)(65 119)(66 118)(67 117)(68 116)(69 115)(70 114)(71 113)(72 112)(73 111)(74 110)(75 109)(76 108)(77 107)(78 106)(79 105)(80 104)(81 103)(82 102)(83 101)(84 100)(85 99)(86 98)(87 97)(88 96)(89 95)(90 94)(91 93)

G:=sub<Sym(183)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183), (1,183)(2,182)(3,181)(4,180)(5,179)(6,178)(7,177)(8,176)(9,175)(10,174)(11,173)(12,172)(13,171)(14,170)(15,169)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,132)(53,131)(54,130)(55,129)(56,128)(57,127)(58,126)(59,125)(60,124)(61,123)(62,122)(63,121)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183), (1,183)(2,182)(3,181)(4,180)(5,179)(6,178)(7,177)(8,176)(9,175)(10,174)(11,173)(12,172)(13,171)(14,170)(15,169)(16,168)(17,167)(18,166)(19,165)(20,164)(21,163)(22,162)(23,161)(24,160)(25,159)(26,158)(27,157)(28,156)(29,155)(30,154)(31,153)(32,152)(33,151)(34,150)(35,149)(36,148)(37,147)(38,146)(39,145)(40,144)(41,143)(42,142)(43,141)(44,140)(45,139)(46,138)(47,137)(48,136)(49,135)(50,134)(51,133)(52,132)(53,131)(54,130)(55,129)(56,128)(57,127)(58,126)(59,125)(60,124)(61,123)(62,122)(63,121)(64,120)(65,119)(66,118)(67,117)(68,116)(69,115)(70,114)(71,113)(72,112)(73,111)(74,110)(75,109)(76,108)(77,107)(78,106)(79,105)(80,104)(81,103)(82,102)(83,101)(84,100)(85,99)(86,98)(87,97)(88,96)(89,95)(90,94)(91,93) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183)], [(1,183),(2,182),(3,181),(4,180),(5,179),(6,178),(7,177),(8,176),(9,175),(10,174),(11,173),(12,172),(13,171),(14,170),(15,169),(16,168),(17,167),(18,166),(19,165),(20,164),(21,163),(22,162),(23,161),(24,160),(25,159),(26,158),(27,157),(28,156),(29,155),(30,154),(31,153),(32,152),(33,151),(34,150),(35,149),(36,148),(37,147),(38,146),(39,145),(40,144),(41,143),(42,142),(43,141),(44,140),(45,139),(46,138),(47,137),(48,136),(49,135),(50,134),(51,133),(52,132),(53,131),(54,130),(55,129),(56,128),(57,127),(58,126),(59,125),(60,124),(61,123),(62,122),(63,121),(64,120),(65,119),(66,118),(67,117),(68,116),(69,115),(70,114),(71,113),(72,112),(73,111),(74,110),(75,109),(76,108),(77,107),(78,106),(79,105),(80,104),(81,103),(82,102),(83,101),(84,100),(85,99),(86,98),(87,97),(88,96),(89,95),(90,94),(91,93)]])

93 conjugacy classes

class 1  2  3 61A···61AD183A···183BH
order12361···61183···183
size118322···22···2

93 irreducible representations

dim11222
type+++++
imageC1C2S3D61D183
kernelD183C183C61C3C1
# reps1113060

Matrix representation of D183 in GL2(𝔽367) generated by

20814
64119
,
336123
2831
G:=sub<GL(2,GF(367))| [208,64,14,119],[336,28,123,31] >;

D183 in GAP, Magma, Sage, TeX

D_{183}
% in TeX

G:=Group("D183");
// GroupNames label

G:=SmallGroup(366,5);
// by ID

G=gap.SmallGroup(366,5);
# by ID

G:=PCGroup([3,-2,-3,-61,25,3242]);
// Polycyclic

G:=Group<a,b|a^183=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D183 in TeX

׿
×
𝔽