Extensions 1→N→G→Q→1 with N=C15 and Q=C3×D4

Direct product G=N×Q with N=C15 and Q=C3×D4
dρLabelID
D4×C3×C15180D4xC3xC15360,116

Semidirect products G=N:Q with N=C15 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C151(C3×D4) = C3×C15⋊D4φ: C3×D4/C6C22 ⊆ Aut C15604C15:1(C3xD4)360,61
C152(C3×D4) = C3×C3⋊D20φ: C3×D4/C6C22 ⊆ Aut C15604C15:2(C3xD4)360,62
C153(C3×D4) = C3×C5⋊D12φ: C3×D4/C6C22 ⊆ Aut C151204C15:3(C3xD4)360,63
C154(C3×D4) = C3×D60φ: C3×D4/C12C2 ⊆ Aut C151202C15:4(C3xD4)360,102
C155(C3×D4) = C32×D20φ: C3×D4/C12C2 ⊆ Aut C15180C15:5(C3xD4)360,92
C156(C3×D4) = C15×D12φ: C3×D4/C12C2 ⊆ Aut C151202C15:6(C3xD4)360,97
C157(C3×D4) = C3×C157D4φ: C3×D4/C2×C6C2 ⊆ Aut C15602C15:7(C3xD4)360,104
C158(C3×D4) = C32×C5⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C15180C15:8(C3xD4)360,94
C159(C3×D4) = C15×C3⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C15602C15:9(C3xD4)360,99

Non-split extensions G=N.Q with N=C15 and Q=C3×D4
extensionφ:Q→Aut NdρLabelID
C15.1(C3×D4) = C9×D20φ: C3×D4/C12C2 ⊆ Aut C151802C15.1(C3xD4)360,17
C15.2(C3×D4) = C9×C5⋊D4φ: C3×D4/C2×C6C2 ⊆ Aut C151802C15.2(C3xD4)360,19
C15.3(C3×D4) = D4×C45central extension (φ=1)1802C15.3(C3xD4)360,31

׿
×
𝔽