Copied to
clipboard

G = C15xC3:D4order 360 = 23·32·5

Direct product of C15 and C3:D4

direct product, metabelian, supersoluble, monomial

Aliases: C15xC3:D4, D6:2C30, Dic3:C30, C62:2C10, C30.71D6, (C2xC30):5S3, (C2xC6):4C30, (C6xC30):8C2, C3:2(D4xC15), C15:9(C3xD4), (C3xC15):25D4, (S3xC6):4C10, (S3xC10):5C6, C32:6(C5xD4), (C2xC30):10C6, C2.5(S3xC30), C6.5(C2xC30), (S3xC30):10C2, C10.17(S3xC6), C6.21(S3xC10), C30.28(C2xC6), C22:3(S3xC15), (C5xDic3):4C6, (C3xDic3):4C10, (Dic3xC15):10C2, (C3xC30).51C22, (C2xC6):3(C5xS3), (C2xC10):5(C3xS3), (C3xC6).10(C2xC10), SmallGroup(360,99)

Series: Derived Chief Lower central Upper central

C1C6 — C15xC3:D4
C1C3C6C30C3xC30S3xC30 — C15xC3:D4
C3C6 — C15xC3:D4
C1C30C2xC30

Generators and relations for C15xC3:D4
 G = < a,b,c,d | a15=b3=c4=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 140 in 74 conjugacy classes, 36 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, C5, S3, C6, C6, D4, C32, C10, C10, Dic3, C12, D6, C2xC6, C2xC6, C15, C15, C3xS3, C3xC6, C3xC6, C20, C2xC10, C2xC10, C3:D4, C3xD4, C5xS3, C30, C30, C3xDic3, S3xC6, C62, C5xD4, C3xC15, C5xDic3, C60, S3xC10, C2xC30, C2xC30, C3xC3:D4, S3xC15, C3xC30, C3xC30, C5xC3:D4, D4xC15, Dic3xC15, S3xC30, C6xC30, C15xC3:D4
Quotients: C1, C2, C3, C22, C5, S3, C6, D4, C10, D6, C2xC6, C15, C3xS3, C2xC10, C3:D4, C3xD4, C5xS3, C30, S3xC6, C5xD4, S3xC10, C2xC30, C3xC3:D4, S3xC15, C5xC3:D4, D4xC15, S3xC30, C15xC3:D4

Smallest permutation representation of C15xC3:D4
On 60 points
Generators in S60
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 11 6)(2 12 7)(3 13 8)(4 14 9)(5 15 10)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)
(1 59 33 22)(2 60 34 23)(3 46 35 24)(4 47 36 25)(5 48 37 26)(6 49 38 27)(7 50 39 28)(8 51 40 29)(9 52 41 30)(10 53 42 16)(11 54 43 17)(12 55 44 18)(13 56 45 19)(14 57 31 20)(15 58 32 21)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 16)(11 17)(12 18)(13 19)(14 20)(15 21)(31 57)(32 58)(33 59)(34 60)(35 46)(36 47)(37 48)(38 49)(39 50)(40 51)(41 52)(42 53)(43 54)(44 55)(45 56)

G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,59,33,22)(2,60,34,23)(3,46,35,24)(4,47,36,25)(5,48,37,26)(6,49,38,27)(7,50,39,28)(8,51,40,29)(9,52,41,30)(10,53,42,16)(11,54,43,17)(12,55,44,18)(13,56,45,19)(14,57,31,20)(15,58,32,21), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,16)(11,17)(12,18)(13,19)(14,20)(15,21)(31,57)(32,58)(33,59)(34,60)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,11,6)(2,12,7)(3,13,8)(4,14,9)(5,15,10)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60), (1,59,33,22)(2,60,34,23)(3,46,35,24)(4,47,36,25)(5,48,37,26)(6,49,38,27)(7,50,39,28)(8,51,40,29)(9,52,41,30)(10,53,42,16)(11,54,43,17)(12,55,44,18)(13,56,45,19)(14,57,31,20)(15,58,32,21), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,16)(11,17)(12,18)(13,19)(14,20)(15,21)(31,57)(32,58)(33,59)(34,60)(35,46)(36,47)(37,48)(38,49)(39,50)(40,51)(41,52)(42,53)(43,54)(44,55)(45,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,11,6),(2,12,7),(3,13,8),(4,14,9),(5,15,10),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60)], [(1,59,33,22),(2,60,34,23),(3,46,35,24),(4,47,36,25),(5,48,37,26),(6,49,38,27),(7,50,39,28),(8,51,40,29),(9,52,41,30),(10,53,42,16),(11,54,43,17),(12,55,44,18),(13,56,45,19),(14,57,31,20),(15,58,32,21)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,16),(11,17),(12,18),(13,19),(14,20),(15,21),(31,57),(32,58),(33,59),(34,60),(35,46),(36,47),(37,48),(38,49),(39,50),(40,51),(41,52),(42,53),(43,54),(44,55),(45,56)]])

135 conjugacy classes

class 1 2A2B2C3A3B3C3D3E 4 5A5B5C5D6A6B6C···6M6N6O10A10B10C10D10E10F10G10H10I10J10K10L12A12B15A···15H15I···15T20A20B20C20D30A···30H30I···30AZ30BA···30BH60A···60H
order12223333345555666···666101010101010101010101010121215···1515···152020202030···3030···3030···3060···60
size11261122261111112···266111122226666661···12···266661···12···26···66···6

135 irreducible representations

dim11111111111111112222222222222222
type+++++++
imageC1C2C2C2C3C5C6C6C6C10C10C10C15C30C30C30S3D4D6C3xS3C3:D4C3xD4C5xS3S3xC6C5xD4S3xC10C3xC3:D4S3xC15C5xC3:D4D4xC15S3xC30C15xC3:D4
kernelC15xC3:D4Dic3xC15S3xC30C6xC30C5xC3:D4C3xC3:D4C5xDic3S3xC10C2xC30C3xDic3S3xC6C62C3:D4Dic3D6C2xC6C2xC30C3xC15C30C2xC10C15C15C2xC6C10C32C6C5C22C3C3C2C1
# reps111124222444888811122242444888816

Matrix representation of C15xC3:D4 in GL2(F31) generated by

280
028
,
113
2629
,
204
1611
,
3018
01
G:=sub<GL(2,GF(31))| [28,0,0,28],[1,26,13,29],[20,16,4,11],[30,0,18,1] >;

C15xC3:D4 in GAP, Magma, Sage, TeX

C_{15}\times C_3\rtimes D_4
% in TeX

G:=Group("C15xC3:D4");
// GroupNames label

G:=SmallGroup(360,99);
// by ID

G=gap.SmallGroup(360,99);
# by ID

G:=PCGroup([6,-2,-2,-3,-5,-2,-3,745,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^3=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<