Extensions 1→N→G→Q→1 with N=S3×C10 and Q=S3

Direct product G=N×Q with N=S3×C10 and Q=S3
dρLabelID
S32×C10604S3^2xC10360,153

Semidirect products G=N:Q with N=S3×C10 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1S3 = D6⋊D15φ: S3/C3C2 ⊆ Out S3×C101204-(S3xC10):1S3360,80
(S3×C10)⋊2S3 = D62D15φ: S3/C3C2 ⊆ Out S3×C10604+(S3xC10):2S3360,82
(S3×C10)⋊3S3 = C2×S3×D15φ: S3/C3C2 ⊆ Out S3×C10604+(S3xC10):3S3360,154
(S3×C10)⋊4S3 = C5×D6⋊S3φ: S3/C3C2 ⊆ Out S3×C101204(S3xC10):4S3360,74
(S3×C10)⋊5S3 = C5×C3⋊D12φ: S3/C3C2 ⊆ Out S3×C10604(S3xC10):5S3360,75

Non-split extensions G=N.Q with N=S3×C10 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C10).S3 = S3×Dic15φ: S3/C3C2 ⊆ Out S3×C101204-(S3xC10).S3360,78
(S3×C10).2S3 = C5×S3×Dic3φ: trivial image1204(S3xC10).2S3360,72

׿
×
𝔽