Copied to
clipboard

G = S3×Dic15order 360 = 23·32·5

Direct product of S3 and Dic15

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3×Dic15, D6.D15, C6.2D30, C30.22D6, C10.2S32, (S3×C6).D5, (S3×C10).S3, (C3×S3)⋊Dic5, C6.2(S3×D5), C54(S3×Dic3), (S3×C15)⋊3C4, C1516(C4×S3), C33(S3×Dic5), C2.2(S3×D15), (C3×C6).2D10, (S3×C30).2C2, C3⋊Dic156C2, (C5×S3)⋊2Dic3, C155(C2×Dic3), C31(C2×Dic15), C322(C2×Dic5), (C3×Dic15)⋊5C2, (C3×C30).16C22, (C3×C15)⋊20(C2×C4), SmallGroup(360,78)

Series: Derived Chief Lower central Upper central

C1C3×C15 — S3×Dic15
C1C5C15C3×C15C3×C30C3×Dic15 — S3×Dic15
C3×C15 — S3×Dic15
C1C2

Generators and relations for S3×Dic15
 G = < a,b,c,d | a3=b2=c30=1, d2=c15, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 348 in 70 conjugacy classes, 32 normal (24 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2×C4, C32, C10, C10, Dic3, C12, D6, C2×C6, C15, C15, C3×S3, C3×C6, Dic5, C2×C10, C4×S3, C2×Dic3, C5×S3, C30, C30, C3×Dic3, C3⋊Dic3, S3×C6, C2×Dic5, C3×C15, C3×Dic5, Dic15, Dic15, S3×C10, C2×C30, S3×Dic3, S3×C15, C3×C30, S3×Dic5, C2×Dic15, C3×Dic15, C3⋊Dic15, S3×C30, S3×Dic15
Quotients: C1, C2, C4, C22, S3, C2×C4, D5, Dic3, D6, Dic5, D10, C4×S3, C2×Dic3, D15, S32, C2×Dic5, Dic15, S3×D5, D30, S3×Dic3, S3×Dic5, C2×Dic15, S3×D15, S3×Dic15

Smallest permutation representation of S3×Dic15
On 120 points
Generators in S120
(1 11 21)(2 12 22)(3 13 23)(4 14 24)(5 15 25)(6 16 26)(7 17 27)(8 18 28)(9 19 29)(10 20 30)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 81 71)(62 82 72)(63 83 73)(64 84 74)(65 85 75)(66 86 76)(67 87 77)(68 88 78)(69 89 79)(70 90 80)(91 101 111)(92 102 112)(93 103 113)(94 104 114)(95 105 115)(96 106 116)(97 107 117)(98 108 118)(99 109 119)(100 110 120)
(1 37)(2 38)(3 39)(4 40)(5 41)(6 42)(7 43)(8 44)(9 45)(10 46)(11 47)(12 48)(13 49)(14 50)(15 51)(16 52)(17 53)(18 54)(19 55)(20 56)(21 57)(22 58)(23 59)(24 60)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(61 101)(62 102)(63 103)(64 104)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 113)(74 114)(75 115)(76 116)(77 117)(78 118)(79 119)(80 120)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 61 16 76)(2 90 17 75)(3 89 18 74)(4 88 19 73)(5 87 20 72)(6 86 21 71)(7 85 22 70)(8 84 23 69)(9 83 24 68)(10 82 25 67)(11 81 26 66)(12 80 27 65)(13 79 28 64)(14 78 29 63)(15 77 30 62)(31 107 46 92)(32 106 47 91)(33 105 48 120)(34 104 49 119)(35 103 50 118)(36 102 51 117)(37 101 52 116)(38 100 53 115)(39 99 54 114)(40 98 55 113)(41 97 56 112)(42 96 57 111)(43 95 58 110)(44 94 59 109)(45 93 60 108)

G:=sub<Sym(120)| (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,76)(2,90,17,75)(3,89,18,74)(4,88,19,73)(5,87,20,72)(6,86,21,71)(7,85,22,70)(8,84,23,69)(9,83,24,68)(10,82,25,67)(11,81,26,66)(12,80,27,65)(13,79,28,64)(14,78,29,63)(15,77,30,62)(31,107,46,92)(32,106,47,91)(33,105,48,120)(34,104,49,119)(35,103,50,118)(36,102,51,117)(37,101,52,116)(38,100,53,115)(39,99,54,114)(40,98,55,113)(41,97,56,112)(42,96,57,111)(43,95,58,110)(44,94,59,109)(45,93,60,108)>;

G:=Group( (1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,81,71)(62,82,72)(63,83,73)(64,84,74)(65,85,75)(66,86,76)(67,87,77)(68,88,78)(69,89,79)(70,90,80)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,37)(2,38)(3,39)(4,40)(5,41)(6,42)(7,43)(8,44)(9,45)(10,46)(11,47)(12,48)(13,49)(14,50)(15,51)(16,52)(17,53)(18,54)(19,55)(20,56)(21,57)(22,58)(23,59)(24,60)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(61,101)(62,102)(63,103)(64,104)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,113)(74,114)(75,115)(76,116)(77,117)(78,118)(79,119)(80,120)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,61,16,76)(2,90,17,75)(3,89,18,74)(4,88,19,73)(5,87,20,72)(6,86,21,71)(7,85,22,70)(8,84,23,69)(9,83,24,68)(10,82,25,67)(11,81,26,66)(12,80,27,65)(13,79,28,64)(14,78,29,63)(15,77,30,62)(31,107,46,92)(32,106,47,91)(33,105,48,120)(34,104,49,119)(35,103,50,118)(36,102,51,117)(37,101,52,116)(38,100,53,115)(39,99,54,114)(40,98,55,113)(41,97,56,112)(42,96,57,111)(43,95,58,110)(44,94,59,109)(45,93,60,108) );

G=PermutationGroup([[(1,11,21),(2,12,22),(3,13,23),(4,14,24),(5,15,25),(6,16,26),(7,17,27),(8,18,28),(9,19,29),(10,20,30),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,81,71),(62,82,72),(63,83,73),(64,84,74),(65,85,75),(66,86,76),(67,87,77),(68,88,78),(69,89,79),(70,90,80),(91,101,111),(92,102,112),(93,103,113),(94,104,114),(95,105,115),(96,106,116),(97,107,117),(98,108,118),(99,109,119),(100,110,120)], [(1,37),(2,38),(3,39),(4,40),(5,41),(6,42),(7,43),(8,44),(9,45),(10,46),(11,47),(12,48),(13,49),(14,50),(15,51),(16,52),(17,53),(18,54),(19,55),(20,56),(21,57),(22,58),(23,59),(24,60),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(61,101),(62,102),(63,103),(64,104),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,113),(74,114),(75,115),(76,116),(77,117),(78,118),(79,119),(80,120),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,61,16,76),(2,90,17,75),(3,89,18,74),(4,88,19,73),(5,87,20,72),(6,86,21,71),(7,85,22,70),(8,84,23,69),(9,83,24,68),(10,82,25,67),(11,81,26,66),(12,80,27,65),(13,79,28,64),(14,78,29,63),(15,77,30,62),(31,107,46,92),(32,106,47,91),(33,105,48,120),(34,104,49,119),(35,103,50,118),(36,102,51,117),(37,101,52,116),(38,100,53,115),(39,99,54,114),(40,98,55,113),(41,97,56,112),(42,96,57,111),(43,95,58,110),(44,94,59,109),(45,93,60,108)]])

54 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D5A5B6A6B6C6D6E10A10B10C10D10E10F12A12B15A15B15C15D15E···15J30A30B30C30D30E···30J30K···30R
order12223334444556666610101010101012121515151515···153030303030···3030···30
size1133224151545452222466226666303022224···422224···46···6

54 irreducible representations

dim1111122222222222444444
type+++++++-+-++-+++--+-
imageC1C2C2C2C4S3S3D5Dic3D6Dic5D10C4×S3D15Dic15D30S32S3×D5S3×Dic3S3×Dic5S3×D15S3×Dic15
kernelS3×Dic15C3×Dic15C3⋊Dic15S3×C30S3×C15Dic15S3×C10S3×C6C5×S3C30C3×S3C3×C6C15D6S3C6C10C6C5C3C2C1
# reps1111411222422484121244

Matrix representation of S3×Dic15 in GL6(𝔽61)

100000
010000
001000
000100
000001
00006060
,
6000000
0600000
0060000
0006000
000010
00006060
,
44600000
100000
00606000
001000
000010
000001
,
22470000
39390000
0060000
001100
000010
000001

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,1,60],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,1,60,0,0,0,0,0,60],[44,1,0,0,0,0,60,0,0,0,0,0,0,0,60,1,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[22,39,0,0,0,0,47,39,0,0,0,0,0,0,60,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

S3×Dic15 in GAP, Magma, Sage, TeX

S_3\times {\rm Dic}_{15}
% in TeX

G:=Group("S3xDic15");
// GroupNames label

G:=SmallGroup(360,78);
// by ID

G=gap.SmallGroup(360,78);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-3,-5,24,201,1444,10373]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^30=1,d^2=c^15,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽