direct product, metabelian, supersoluble, monomial
Aliases: C5×C3⋊D12, C15⋊9D12, C30.38D6, C10.16S32, D6⋊2(C5×S3), C3⋊2(C5×D12), (C3×C15)⋊16D4, Dic3⋊(C5×S3), (S3×C30)⋊8C2, (S3×C6)⋊2C10, (S3×C10)⋊5S3, C32⋊3(C5×D4), C6.4(S3×C10), C15⋊9(C3⋊D4), (C5×Dic3)⋊4S3, (C3×Dic3)⋊1C10, (Dic3×C15)⋊5C2, (C3×C30).30C22, C2.4(C5×S32), C3⋊1(C5×C3⋊D4), (C10×C3⋊S3)⋊6C2, (C2×C3⋊S3)⋊1C10, (C3×C6).4(C2×C10), SmallGroup(360,75)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×C3⋊D12
G = < a,b,c,d | a5=b3=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 252 in 74 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C15, C3×S3, C3⋊S3, C3×C6, C20, C2×C10, D12, C3⋊D4, C5×S3, C30, C30, C3×Dic3, S3×C6, C2×C3⋊S3, C5×D4, C3×C15, C5×Dic3, C60, S3×C10, S3×C10, C2×C30, C3⋊D12, S3×C15, C5×C3⋊S3, C3×C30, C5×D12, C5×C3⋊D4, Dic3×C15, S3×C30, C10×C3⋊S3, C5×C3⋊D12
Quotients: C1, C2, C22, C5, S3, D4, C10, D6, C2×C10, D12, C3⋊D4, C5×S3, S32, C5×D4, S3×C10, C3⋊D12, C5×D12, C5×C3⋊D4, C5×S32, C5×C3⋊D12
(1 28 41 13 59)(2 29 42 14 60)(3 30 43 15 49)(4 31 44 16 50)(5 32 45 17 51)(6 33 46 18 52)(7 34 47 19 53)(8 35 48 20 54)(9 36 37 21 55)(10 25 38 22 56)(11 26 39 23 57)(12 27 40 24 58)
(1 5 9)(2 10 6)(3 7 11)(4 12 8)(13 17 21)(14 22 18)(15 19 23)(16 24 20)(25 33 29)(26 30 34)(27 35 31)(28 32 36)(37 41 45)(38 46 42)(39 43 47)(40 48 44)(49 53 57)(50 58 54)(51 55 59)(52 60 56)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)(25 33)(26 32)(27 31)(28 30)(34 36)(37 47)(38 46)(39 45)(40 44)(41 43)(49 59)(50 58)(51 57)(52 56)(53 55)
G:=sub<Sym(60)| (1,28,41,13,59)(2,29,42,14,60)(3,30,43,15,49)(4,31,44,16,50)(5,32,45,17,51)(6,33,46,18,52)(7,34,47,19,53)(8,35,48,20,54)(9,36,37,21,55)(10,25,38,22,56)(11,26,39,23,57)(12,27,40,24,58), (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,33,29)(26,30,34)(27,35,31)(28,32,36)(37,41,45)(38,46,42)(39,43,47)(40,48,44)(49,53,57)(50,58,54)(51,55,59)(52,60,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,33)(26,32)(27,31)(28,30)(34,36)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55)>;
G:=Group( (1,28,41,13,59)(2,29,42,14,60)(3,30,43,15,49)(4,31,44,16,50)(5,32,45,17,51)(6,33,46,18,52)(7,34,47,19,53)(8,35,48,20,54)(9,36,37,21,55)(10,25,38,22,56)(11,26,39,23,57)(12,27,40,24,58), (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,33,29)(26,30,34)(27,35,31)(28,32,36)(37,41,45)(38,46,42)(39,43,47)(40,48,44)(49,53,57)(50,58,54)(51,55,59)(52,60,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,33)(26,32)(27,31)(28,30)(34,36)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55) );
G=PermutationGroup([[(1,28,41,13,59),(2,29,42,14,60),(3,30,43,15,49),(4,31,44,16,50),(5,32,45,17,51),(6,33,46,18,52),(7,34,47,19,53),(8,35,48,20,54),(9,36,37,21,55),(10,25,38,22,56),(11,26,39,23,57),(12,27,40,24,58)], [(1,5,9),(2,10,6),(3,7,11),(4,12,8),(13,17,21),(14,22,18),(15,19,23),(16,24,20),(25,33,29),(26,30,34),(27,35,31),(28,32,36),(37,41,45),(38,46,42),(39,43,47),(40,48,44),(49,53,57),(50,58,54),(51,55,59),(52,60,56)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21),(25,33),(26,32),(27,31),(28,30),(34,36),(37,47),(38,46),(39,45),(40,44),(41,43),(49,59),(50,58),(51,57),(52,56),(53,55)]])
75 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 4 | 5A | 5B | 5C | 5D | 6A | 6B | 6C | 6D | 6E | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 10I | 10J | 10K | 10L | 12A | 12B | 15A | ··· | 15H | 15I | 15J | 15K | 15L | 20A | 20B | 20C | 20D | 30A | ··· | 30H | 30I | 30J | 30K | 30L | 30M | ··· | 30T | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | ··· | 15 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 30 | 30 | 30 | 30 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 6 | 18 | 2 | 2 | 4 | 6 | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 6 | 6 | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 18 | 18 | 18 | 18 | 6 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 |
75 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |||||||||||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | S3 | S3 | D4 | D6 | D12 | C3⋊D4 | C5×S3 | C5×S3 | C5×D4 | S3×C10 | C5×D12 | C5×C3⋊D4 | S32 | C3⋊D12 | C5×S32 | C5×C3⋊D12 |
kernel | C5×C3⋊D12 | Dic3×C15 | S3×C30 | C10×C3⋊S3 | C3⋊D12 | C3×Dic3 | S3×C6 | C2×C3⋊S3 | C5×Dic3 | S3×C10 | C3×C15 | C30 | C15 | C15 | Dic3 | D6 | C32 | C6 | C3 | C3 | C10 | C5 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 8 | 8 | 1 | 1 | 4 | 4 |
Matrix representation of C5×C3⋊D12 ►in GL6(𝔽61)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 58 | 0 | 0 | 0 |
0 | 0 | 0 | 58 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 60 |
0 | 0 | 0 | 0 | 1 | 60 |
0 | 1 | 0 | 0 | 0 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 60 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
60 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 60 | 60 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,58,0,0,0,0,0,0,58,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[0,60,0,0,0,0,1,0,0,0,0,0,0,0,1,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[60,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C5×C3⋊D12 in GAP, Magma, Sage, TeX
C_5\times C_3\rtimes D_{12}
% in TeX
G:=Group("C5xC3:D12");
// GroupNames label
G:=SmallGroup(360,75);
// by ID
G=gap.SmallGroup(360,75);
# by ID
G:=PCGroup([6,-2,-2,-5,-2,-3,-3,265,127,1210,8645]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^3=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations