Copied to
clipboard

G = C5×C3⋊D12order 360 = 23·32·5

Direct product of C5 and C3⋊D12

direct product, metabelian, supersoluble, monomial

Aliases: C5×C3⋊D12, C159D12, C30.38D6, C10.16S32, D62(C5×S3), C32(C5×D12), (C3×C15)⋊16D4, Dic3⋊(C5×S3), (S3×C30)⋊8C2, (S3×C6)⋊2C10, (S3×C10)⋊5S3, C323(C5×D4), C6.4(S3×C10), C159(C3⋊D4), (C5×Dic3)⋊4S3, (C3×Dic3)⋊1C10, (Dic3×C15)⋊5C2, (C3×C30).30C22, C2.4(C5×S32), C31(C5×C3⋊D4), (C10×C3⋊S3)⋊6C2, (C2×C3⋊S3)⋊1C10, (C3×C6).4(C2×C10), SmallGroup(360,75)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C5×C3⋊D12
C1C3C32C3×C6C3×C30S3×C30 — C5×C3⋊D12
C32C3×C6 — C5×C3⋊D12
C1C10

Generators and relations for C5×C3⋊D12
 G = < a,b,c,d | a5=b3=c12=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >

Subgroups: 252 in 74 conjugacy classes, 28 normal (all characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, D4, C32, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C15, C3×S3, C3⋊S3, C3×C6, C20, C2×C10, D12, C3⋊D4, C5×S3, C30, C30, C3×Dic3, S3×C6, C2×C3⋊S3, C5×D4, C3×C15, C5×Dic3, C60, S3×C10, S3×C10, C2×C30, C3⋊D12, S3×C15, C5×C3⋊S3, C3×C30, C5×D12, C5×C3⋊D4, Dic3×C15, S3×C30, C10×C3⋊S3, C5×C3⋊D12
Quotients: C1, C2, C22, C5, S3, D4, C10, D6, C2×C10, D12, C3⋊D4, C5×S3, S32, C5×D4, S3×C10, C3⋊D12, C5×D12, C5×C3⋊D4, C5×S32, C5×C3⋊D12

Smallest permutation representation of C5×C3⋊D12
On 60 points
Generators in S60
(1 28 41 13 59)(2 29 42 14 60)(3 30 43 15 49)(4 31 44 16 50)(5 32 45 17 51)(6 33 46 18 52)(7 34 47 19 53)(8 35 48 20 54)(9 36 37 21 55)(10 25 38 22 56)(11 26 39 23 57)(12 27 40 24 58)
(1 5 9)(2 10 6)(3 7 11)(4 12 8)(13 17 21)(14 22 18)(15 19 23)(16 24 20)(25 33 29)(26 30 34)(27 35 31)(28 32 36)(37 41 45)(38 46 42)(39 43 47)(40 48 44)(49 53 57)(50 58 54)(51 55 59)(52 60 56)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)(25 33)(26 32)(27 31)(28 30)(34 36)(37 47)(38 46)(39 45)(40 44)(41 43)(49 59)(50 58)(51 57)(52 56)(53 55)

G:=sub<Sym(60)| (1,28,41,13,59)(2,29,42,14,60)(3,30,43,15,49)(4,31,44,16,50)(5,32,45,17,51)(6,33,46,18,52)(7,34,47,19,53)(8,35,48,20,54)(9,36,37,21,55)(10,25,38,22,56)(11,26,39,23,57)(12,27,40,24,58), (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,33,29)(26,30,34)(27,35,31)(28,32,36)(37,41,45)(38,46,42)(39,43,47)(40,48,44)(49,53,57)(50,58,54)(51,55,59)(52,60,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,33)(26,32)(27,31)(28,30)(34,36)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55)>;

G:=Group( (1,28,41,13,59)(2,29,42,14,60)(3,30,43,15,49)(4,31,44,16,50)(5,32,45,17,51)(6,33,46,18,52)(7,34,47,19,53)(8,35,48,20,54)(9,36,37,21,55)(10,25,38,22,56)(11,26,39,23,57)(12,27,40,24,58), (1,5,9)(2,10,6)(3,7,11)(4,12,8)(13,17,21)(14,22,18)(15,19,23)(16,24,20)(25,33,29)(26,30,34)(27,35,31)(28,32,36)(37,41,45)(38,46,42)(39,43,47)(40,48,44)(49,53,57)(50,58,54)(51,55,59)(52,60,56), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,33)(26,32)(27,31)(28,30)(34,36)(37,47)(38,46)(39,45)(40,44)(41,43)(49,59)(50,58)(51,57)(52,56)(53,55) );

G=PermutationGroup([[(1,28,41,13,59),(2,29,42,14,60),(3,30,43,15,49),(4,31,44,16,50),(5,32,45,17,51),(6,33,46,18,52),(7,34,47,19,53),(8,35,48,20,54),(9,36,37,21,55),(10,25,38,22,56),(11,26,39,23,57),(12,27,40,24,58)], [(1,5,9),(2,10,6),(3,7,11),(4,12,8),(13,17,21),(14,22,18),(15,19,23),(16,24,20),(25,33,29),(26,30,34),(27,35,31),(28,32,36),(37,41,45),(38,46,42),(39,43,47),(40,48,44),(49,53,57),(50,58,54),(51,55,59),(52,60,56)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21),(25,33),(26,32),(27,31),(28,30),(34,36),(37,47),(38,46),(39,45),(40,44),(41,43),(49,59),(50,58),(51,57),(52,56),(53,55)]])

75 conjugacy classes

class 1 2A2B2C3A3B3C 4 5A5B5C5D6A6B6C6D6E10A10B10C10D10E10F10G10H10I10J10K10L12A12B15A···15H15I15J15K15L20A20B20C20D30A···30H30I30J30K30L30M···30T60A···60H
order12223334555566666101010101010101010101010121215···15151515152020202030···303030303030···3060···60
size1161822461111224661111666618181818662···2444466662···244446···66···6

75 irreducible representations

dim111111112222222222224444
type+++++++++++
imageC1C2C2C2C5C10C10C10S3S3D4D6D12C3⋊D4C5×S3C5×S3C5×D4S3×C10C5×D12C5×C3⋊D4S32C3⋊D12C5×S32C5×C3⋊D12
kernelC5×C3⋊D12Dic3×C15S3×C30C10×C3⋊S3C3⋊D12C3×Dic3S3×C6C2×C3⋊S3C5×Dic3S3×C10C3×C15C30C15C15Dic3D6C32C6C3C3C10C5C2C1
# reps111144441112224448881144

Matrix representation of C5×C3⋊D12 in GL6(𝔽61)

100000
010000
0058000
0005800
000010
000001
,
100000
010000
001000
000100
0000060
0000160
,
010000
6000000
001100
0060000
000001
000010
,
6000000
010000
00606000
000100
000001
000010

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,58,0,0,0,0,0,0,58,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,60,60],[0,60,0,0,0,0,1,0,0,0,0,0,0,0,1,60,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[60,0,0,0,0,0,0,1,0,0,0,0,0,0,60,0,0,0,0,0,60,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C5×C3⋊D12 in GAP, Magma, Sage, TeX

C_5\times C_3\rtimes D_{12}
% in TeX

G:=Group("C5xC3:D12");
// GroupNames label

G:=SmallGroup(360,75);
// by ID

G=gap.SmallGroup(360,75);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-3,-3,265,127,1210,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^3=c^12=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽