Extensions 1→N→G→Q→1 with N=S3×C6 and Q=D5

Direct product G=N×Q with N=S3×C6 and Q=D5
dρLabelID
S3×C6×D5604S3xC6xD5360,151

Semidirect products G=N:Q with N=S3×C6 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1D5 = C3×C15⋊D4φ: D5/C5C2 ⊆ Out S3×C6604(S3xC6):1D5360,61
(S3×C6)⋊2D5 = C3×C5⋊D12φ: D5/C5C2 ⊆ Out S3×C61204(S3xC6):2D5360,63
(S3×C6)⋊3D5 = D6⋊D15φ: D5/C5C2 ⊆ Out S3×C61204-(S3xC6):3D5360,80
(S3×C6)⋊4D5 = D62D15φ: D5/C5C2 ⊆ Out S3×C6604+(S3xC6):4D5360,82
(S3×C6)⋊5D5 = C2×S3×D15φ: D5/C5C2 ⊆ Out S3×C6604+(S3xC6):5D5360,154

Non-split extensions G=N.Q with N=S3×C6 and Q=D5
extensionφ:Q→Out NdρLabelID
(S3×C6).D5 = S3×Dic15φ: D5/C5C2 ⊆ Out S3×C61204-(S3xC6).D5360,78
(S3×C6).2D5 = C3×S3×Dic5φ: trivial image1204(S3xC6).2D5360,59

׿
×
𝔽