Extensions 1→N→G→Q→1 with N=C3 and Q=C3×D21

Direct product G=N×Q with N=C3 and Q=C3×D21
dρLabelID
C32×D21126C3^2xD21378,55

Semidirect products G=N:Q with N=C3 and Q=C3×D21
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×D21) = C3×C3⋊D21φ: C3×D21/C3×C21C2 ⊆ Aut C3126C3:(C3xD21)378,57

Non-split extensions G=N.Q with N=C3 and Q=C3×D21
extensionφ:Q→Aut NdρLabelID
C3.1(C3×D21) = C3×D63φ: C3×D21/C3×C21C2 ⊆ Aut C31262C3.1(C3xD21)378,36
C3.2(C3×D21) = He3⋊D7φ: C3×D21/C3×C21C2 ⊆ Aut C3636+C3.2(C3xD21)378,38
C3.3(C3×D21) = D63⋊C3φ: C3×D21/C3×C21C2 ⊆ Aut C3636+C3.3(C3xD21)378,39
C3.4(C3×D21) = C9×D21central extension (φ=1)1262C3.4(C3xD21)378,37

׿
×
𝔽