direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×D21, C21⋊5C6, C21⋊2S3, C32⋊1D7, C3⋊(C3×D7), C7⋊3(C3×S3), (C3×C21)⋊2C2, SmallGroup(126,13)
Series: Derived ►Chief ►Lower central ►Upper central
C21 — C3×D21 |
Generators and relations for C3×D21
G = < a,b,c | a3=b21=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)
(1 32)(2 31)(3 30)(4 29)(5 28)(6 27)(7 26)(8 25)(9 24)(10 23)(11 22)(12 42)(13 41)(14 40)(15 39)(16 38)(17 37)(18 36)(19 35)(20 34)(21 33)
G:=sub<Sym(42)| (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)>;
G:=Group( (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42), (1,32)(2,31)(3,30)(4,29)(5,28)(6,27)(7,26)(8,25)(9,24)(10,23)(11,22)(12,42)(13,41)(14,40)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33) );
G=PermutationGroup([[(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)], [(1,32),(2,31),(3,30),(4,29),(5,28),(6,27),(7,26),(8,25),(9,24),(10,23),(11,22),(12,42),(13,41),(14,40),(15,39),(16,38),(17,37),(18,36),(19,35),(20,34),(21,33)]])
C3×D21 is a maximal subgroup of
C3×S3×D7 D21⋊S3 D21⋊C9 He3⋊D7 D63⋊C3 C32⋊D21
C3×D21 is a maximal quotient of He3⋊D7 D63⋊C3
36 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 7A | 7B | 7C | 21A | ··· | 21X |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 7 | 7 | 7 | 21 | ··· | 21 |
size | 1 | 21 | 1 | 1 | 2 | 2 | 2 | 21 | 21 | 2 | 2 | 2 | 2 | ··· | 2 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | D7 | C3×S3 | C3×D7 | D21 | C3×D21 |
kernel | C3×D21 | C3×C21 | D21 | C21 | C21 | C32 | C7 | C3 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 3 | 2 | 6 | 6 | 12 |
Matrix representation of C3×D21 ►in GL2(𝔽43) generated by
36 | 0 |
0 | 36 |
23 | 0 |
0 | 15 |
0 | 15 |
23 | 0 |
G:=sub<GL(2,GF(43))| [36,0,0,36],[23,0,0,15],[0,23,15,0] >;
C3×D21 in GAP, Magma, Sage, TeX
C_3\times D_{21}
% in TeX
G:=Group("C3xD21");
// GroupNames label
G:=SmallGroup(126,13);
// by ID
G=gap.SmallGroup(126,13);
# by ID
G:=PCGroup([4,-2,-3,-3,-7,146,1731]);
// Polycyclic
G:=Group<a,b,c|a^3=b^21=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export