Extensions 1→N→G→Q→1 with N=Dic15 and Q=S3

Direct product G=N×Q with N=Dic15 and Q=S3
dρLabelID
S3×Dic151204-S3xDic15360,78

Semidirect products G=N:Q with N=Dic15 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic151S3 = D62D15φ: S3/C3C2 ⊆ Out Dic15604+Dic15:1S3360,82
Dic152S3 = D30.S3φ: S3/C3C2 ⊆ Out Dic151204Dic15:2S3360,84
Dic153S3 = Dic15⋊S3φ: S3/C3C2 ⊆ Out Dic15604Dic15:3S3360,85
Dic154S3 = D30⋊S3φ: S3/C3C2 ⊆ Out Dic15604Dic15:4S3360,86
Dic155S3 = C6.D30φ: trivial image604+Dic15:5S3360,79

Non-split extensions G=N.Q with N=Dic15 and Q=S3
extensionφ:Q→Out NdρLabelID
Dic15.1S3 = C3⋊Dic30φ: S3/C3C2 ⊆ Out Dic151204-Dic15.1S3360,83
Dic15.2S3 = C323Dic10φ: S3/C3C2 ⊆ Out Dic151204Dic15.2S3360,88

׿
×
𝔽