Extensions 1→N→G→Q→1 with N=C15 and Q=Dic6

Direct product G=N×Q with N=C15 and Q=Dic6
dρLabelID
C15×Dic61202C15xDic6360,95

Semidirect products G=N:Q with N=C15 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C151Dic6 = C15⋊Dic6φ: Dic6/C6C22 ⊆ Aut C15360C15:1Dic6360,71
C152Dic6 = C3⋊Dic30φ: Dic6/C6C22 ⊆ Aut C151204-C15:2Dic6360,83
C153Dic6 = C323Dic10φ: Dic6/C6C22 ⊆ Aut C151204C15:3Dic6360,88
C154Dic6 = C3×C15⋊Q8φ: Dic6/Dic3C2 ⊆ Aut C151204C15:4Dic6360,64
C155Dic6 = C5×C322Q8φ: Dic6/Dic3C2 ⊆ Aut C151204C15:5Dic6360,76
C156Dic6 = C12.D15φ: Dic6/C12C2 ⊆ Aut C15360C15:6Dic6360,110
C157Dic6 = C3×Dic30φ: Dic6/C12C2 ⊆ Aut C151202C15:7Dic6360,100
C158Dic6 = C5×C324Q8φ: Dic6/C12C2 ⊆ Aut C15360C15:8Dic6360,105

Non-split extensions G=N.Q with N=C15 and Q=Dic6
extensionφ:Q→Aut NdρLabelID
C15.Dic6 = C45⋊Q8φ: Dic6/C6C22 ⊆ Aut C153604-C15.Dic6360,7
C15.2Dic6 = Dic90φ: Dic6/C12C2 ⊆ Aut C153602-C15.2Dic6360,25
C15.3Dic6 = C5×Dic18φ: Dic6/C12C2 ⊆ Aut C153602C15.3Dic6360,20

׿
×
𝔽