direct product, metacyclic, supersoluble, monomial
Aliases: C3×Dic30, C60.1C6, C60.7S3, C15⋊7Dic6, C6.19D30, C30.51D6, C12.7D15, C32⋊6Dic10, Dic15.1C6, C4.(C3×D15), (C3×C15)⋊9Q8, C15⋊2(C3×Q8), C6.8(C6×D5), C5⋊2(C3×Dic6), C10.8(S3×C6), C20.1(C3×S3), C30.8(C2×C6), (C3×C60).2C2, C2.3(C6×D15), (C3×C12).2D5, C12.1(C3×D5), C3⋊2(C3×Dic10), (C3×C6).27D10, (C3×C30).37C22, (C3×Dic15).1C2, SmallGroup(360,100)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Dic30
G = < a,b,c | a3=b60=1, c2=b30, ab=ba, ac=ca, cbc-1=b-1 >
Subgroups: 180 in 54 conjugacy classes, 30 normal (26 characteristic)
C1, C2, C3, C3, C4, C4, C5, C6, C6, Q8, C32, C10, Dic3, C12, C12, C15, C15, C3×C6, Dic5, C20, Dic6, C3×Q8, C30, C30, C3×Dic3, C3×C12, Dic10, C3×C15, C3×Dic5, Dic15, C60, C60, C3×Dic6, C3×C30, C3×Dic10, Dic30, C3×Dic15, C3×C60, C3×Dic30
Quotients: C1, C2, C3, C22, S3, C6, Q8, D5, D6, C2×C6, C3×S3, D10, Dic6, C3×Q8, C3×D5, D15, S3×C6, Dic10, C6×D5, D30, C3×Dic6, C3×D15, C3×Dic10, Dic30, C6×D15, C3×Dic30
(1 21 41)(2 22 42)(3 23 43)(4 24 44)(5 25 45)(6 26 46)(7 27 47)(8 28 48)(9 29 49)(10 30 50)(11 31 51)(12 32 52)(13 33 53)(14 34 54)(15 35 55)(16 36 56)(17 37 57)(18 38 58)(19 39 59)(20 40 60)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 101 31 71)(2 100 32 70)(3 99 33 69)(4 98 34 68)(5 97 35 67)(6 96 36 66)(7 95 37 65)(8 94 38 64)(9 93 39 63)(10 92 40 62)(11 91 41 61)(12 90 42 120)(13 89 43 119)(14 88 44 118)(15 87 45 117)(16 86 46 116)(17 85 47 115)(18 84 48 114)(19 83 49 113)(20 82 50 112)(21 81 51 111)(22 80 52 110)(23 79 53 109)(24 78 54 108)(25 77 55 107)(26 76 56 106)(27 75 57 105)(28 74 58 104)(29 73 59 103)(30 72 60 102)
G:=sub<Sym(120)| (1,21,41)(2,22,42)(3,23,43)(4,24,44)(5,25,45)(6,26,46)(7,27,47)(8,28,48)(9,29,49)(10,30,50)(11,31,51)(12,32,52)(13,33,53)(14,34,54)(15,35,55)(16,36,56)(17,37,57)(18,38,58)(19,39,59)(20,40,60)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,101,31,71)(2,100,32,70)(3,99,33,69)(4,98,34,68)(5,97,35,67)(6,96,36,66)(7,95,37,65)(8,94,38,64)(9,93,39,63)(10,92,40,62)(11,91,41,61)(12,90,42,120)(13,89,43,119)(14,88,44,118)(15,87,45,117)(16,86,46,116)(17,85,47,115)(18,84,48,114)(19,83,49,113)(20,82,50,112)(21,81,51,111)(22,80,52,110)(23,79,53,109)(24,78,54,108)(25,77,55,107)(26,76,56,106)(27,75,57,105)(28,74,58,104)(29,73,59,103)(30,72,60,102)>;
G:=Group( (1,21,41)(2,22,42)(3,23,43)(4,24,44)(5,25,45)(6,26,46)(7,27,47)(8,28,48)(9,29,49)(10,30,50)(11,31,51)(12,32,52)(13,33,53)(14,34,54)(15,35,55)(16,36,56)(17,37,57)(18,38,58)(19,39,59)(20,40,60)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,101,31,71)(2,100,32,70)(3,99,33,69)(4,98,34,68)(5,97,35,67)(6,96,36,66)(7,95,37,65)(8,94,38,64)(9,93,39,63)(10,92,40,62)(11,91,41,61)(12,90,42,120)(13,89,43,119)(14,88,44,118)(15,87,45,117)(16,86,46,116)(17,85,47,115)(18,84,48,114)(19,83,49,113)(20,82,50,112)(21,81,51,111)(22,80,52,110)(23,79,53,109)(24,78,54,108)(25,77,55,107)(26,76,56,106)(27,75,57,105)(28,74,58,104)(29,73,59,103)(30,72,60,102) );
G=PermutationGroup([[(1,21,41),(2,22,42),(3,23,43),(4,24,44),(5,25,45),(6,26,46),(7,27,47),(8,28,48),(9,29,49),(10,30,50),(11,31,51),(12,32,52),(13,33,53),(14,34,54),(15,35,55),(16,36,56),(17,37,57),(18,38,58),(19,39,59),(20,40,60),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,101,31,71),(2,100,32,70),(3,99,33,69),(4,98,34,68),(5,97,35,67),(6,96,36,66),(7,95,37,65),(8,94,38,64),(9,93,39,63),(10,92,40,62),(11,91,41,61),(12,90,42,120),(13,89,43,119),(14,88,44,118),(15,87,45,117),(16,86,46,116),(17,85,47,115),(18,84,48,114),(19,83,49,113),(20,82,50,112),(21,81,51,111),(22,80,52,110),(23,79,53,109),(24,78,54,108),(25,77,55,107),(26,76,56,106),(27,75,57,105),(28,74,58,104),(29,73,59,103),(30,72,60,102)]])
99 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 10A | 10B | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 15A | ··· | 15P | 20A | 20B | 20C | 20D | 30A | ··· | 30P | 60A | ··· | 60AF |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 15 | ··· | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 30 | 30 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 30 | 30 | 30 | 30 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
99 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | - | + | + | + | - | + | - | + | - | |||||||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | Q8 | D5 | D6 | C3×S3 | D10 | Dic6 | C3×Q8 | C3×D5 | D15 | S3×C6 | Dic10 | C6×D5 | D30 | C3×Dic6 | C3×D15 | C3×Dic10 | Dic30 | C6×D15 | C3×Dic30 |
kernel | C3×Dic30 | C3×Dic15 | C3×C60 | Dic30 | Dic15 | C60 | C60 | C3×C15 | C3×C12 | C30 | C20 | C3×C6 | C15 | C15 | C12 | C12 | C10 | C32 | C6 | C6 | C5 | C4 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 16 |
Matrix representation of C3×Dic30 ►in GL2(𝔽61) generated by
47 | 0 |
0 | 47 |
18 | 0 |
34 | 17 |
11 | 23 |
0 | 50 |
G:=sub<GL(2,GF(61))| [47,0,0,47],[18,34,0,17],[11,0,23,50] >;
C3×Dic30 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{30}
% in TeX
G:=Group("C3xDic30");
// GroupNames label
G:=SmallGroup(360,100);
// by ID
G=gap.SmallGroup(360,100);
# by ID
G:=PCGroup([6,-2,-2,-3,-2,-3,-5,72,169,79,1444,10373]);
// Polycyclic
G:=Group<a,b,c|a^3=b^60=1,c^2=b^30,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations