Extensions 1→N→G→Q→1 with N=C2×C6 and Q=C5×S3

Direct product G=N×Q with N=C2×C6 and Q=C5×S3
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=C2×C6 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
(C2×C6)⋊1(C5×S3) = C15×S4φ: C5×S3/C5S3 ⊆ Aut C2×C6603(C2xC6):1(C5xS3)360,138
(C2×C6)⋊2(C5×S3) = C5×C3⋊S4φ: C5×S3/C5S3 ⊆ Aut C2×C6606(C2xC6):2(C5xS3)360,140
(C2×C6)⋊3(C5×S3) = C15×C3⋊D4φ: C5×S3/C15C2 ⊆ Aut C2×C6602(C2xC6):3(C5xS3)360,99
(C2×C6)⋊4(C5×S3) = C5×C327D4φ: C5×S3/C15C2 ⊆ Aut C2×C6180(C2xC6):4(C5xS3)360,109
(C2×C6)⋊5(C5×S3) = C3⋊S3×C2×C10φ: C5×S3/C15C2 ⊆ Aut C2×C6180(C2xC6):5(C5xS3)360,160

Non-split extensions G=N.Q with N=C2×C6 and Q=C5×S3
extensionφ:Q→Aut NdρLabelID
(C2×C6).(C5×S3) = C5×C3.S4φ: C5×S3/C5S3 ⊆ Aut C2×C6906(C2xC6).(C5xS3)360,40
(C2×C6).2(C5×S3) = C10×Dic9φ: C5×S3/C15C2 ⊆ Aut C2×C6360(C2xC6).2(C5xS3)360,23
(C2×C6).3(C5×S3) = C5×C9⋊D4φ: C5×S3/C15C2 ⊆ Aut C2×C61802(C2xC6).3(C5xS3)360,24
(C2×C6).4(C5×S3) = D9×C2×C10φ: C5×S3/C15C2 ⊆ Aut C2×C6180(C2xC6).4(C5xS3)360,48
(C2×C6).5(C5×S3) = C10×C3⋊Dic3φ: C5×S3/C15C2 ⊆ Aut C2×C6360(C2xC6).5(C5xS3)360,108
(C2×C6).6(C5×S3) = Dic3×C30central extension (φ=1)120(C2xC6).6(C5xS3)360,98

׿
×
𝔽