Copied to
clipboard

G = S3xC2xC30order 360 = 23·32·5

Direct product of C2xC30 and S3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: S3xC2xC30, C62:4C10, C6:(C2xC30), C30:4(C2xC6), (C2xC6):5C30, C3:(C22xC30), (C2xC30):11C6, (C6xC30):10C2, C15:4(C22xC6), (C3xC30):9C22, (C3xC15):10C23, C32:2(C22xC10), (C3xC6):2(C2xC10), SmallGroup(360,158)

Series: Derived Chief Lower central Upper central

C1C3 — S3xC2xC30
C1C3C15C3xC15S3xC15S3xC30 — S3xC2xC30
C3 — S3xC2xC30
C1C2xC30

Generators and relations for S3xC2xC30
 G = < a,b,c,d | a2=b30=c3=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 236 in 138 conjugacy classes, 84 normal (20 characteristic)
C1, C2, C2, C3, C3, C22, C22, C5, S3, C6, C6, C23, C32, C10, C10, D6, C2xC6, C2xC6, C15, C15, C3xS3, C3xC6, C2xC10, C2xC10, C22xS3, C22xC6, C5xS3, C30, C30, S3xC6, C62, C22xC10, C3xC15, S3xC10, C2xC30, C2xC30, S3xC2xC6, S3xC15, C3xC30, S3xC2xC10, C22xC30, S3xC30, C6xC30, S3xC2xC30
Quotients: C1, C2, C3, C22, C5, S3, C6, C23, C10, D6, C2xC6, C15, C3xS3, C2xC10, C22xS3, C22xC6, C5xS3, C30, S3xC6, C22xC10, S3xC10, C2xC30, S3xC2xC6, S3xC15, S3xC2xC10, C22xC30, S3xC30, S3xC2xC30

Smallest permutation representation of S3xC2xC30
On 120 points
Generators in S120
(1 52)(2 53)(3 54)(4 55)(5 56)(6 57)(7 58)(8 59)(9 60)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(61 98)(62 99)(63 100)(64 101)(65 102)(66 103)(67 104)(68 105)(69 106)(70 107)(71 108)(72 109)(73 110)(74 111)(75 112)(76 113)(77 114)(78 115)(79 116)(80 117)(81 118)(82 119)(83 120)(84 91)(85 92)(86 93)(87 94)(88 95)(89 96)(90 97)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 21 11)(2 22 12)(3 23 13)(4 24 14)(5 25 15)(6 26 16)(7 27 17)(8 28 18)(9 29 19)(10 30 20)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)(61 71 81)(62 72 82)(63 73 83)(64 74 84)(65 75 85)(66 76 86)(67 77 87)(68 78 88)(69 79 89)(70 80 90)(91 101 111)(92 102 112)(93 103 113)(94 104 114)(95 105 115)(96 106 116)(97 107 117)(98 108 118)(99 109 119)(100 110 120)
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 90)(22 61)(23 62)(24 63)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 116)(32 117)(33 118)(34 119)(35 120)(36 91)(37 92)(38 93)(39 94)(40 95)(41 96)(42 97)(43 98)(44 99)(45 100)(46 101)(47 102)(48 103)(49 104)(50 105)(51 106)(52 107)(53 108)(54 109)(55 110)(56 111)(57 112)(58 113)(59 114)(60 115)

G:=sub<Sym(120)| (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(81,118)(82,119)(83,120)(84,91)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,71,81)(62,72,82)(63,73,83)(64,74,84)(65,75,85)(66,76,86)(67,77,87)(68,78,88)(69,79,89)(70,80,90)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,116)(32,117)(33,118)(34,119)(35,120)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115)>;

G:=Group( (1,52)(2,53)(3,54)(4,55)(5,56)(6,57)(7,58)(8,59)(9,60)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(61,98)(62,99)(63,100)(64,101)(65,102)(66,103)(67,104)(68,105)(69,106)(70,107)(71,108)(72,109)(73,110)(74,111)(75,112)(76,113)(77,114)(78,115)(79,116)(80,117)(81,118)(82,119)(83,120)(84,91)(85,92)(86,93)(87,94)(88,95)(89,96)(90,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,21,11)(2,22,12)(3,23,13)(4,24,14)(5,25,15)(6,26,16)(7,27,17)(8,28,18)(9,29,19)(10,30,20)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50)(61,71,81)(62,72,82)(63,73,83)(64,74,84)(65,75,85)(66,76,86)(67,77,87)(68,78,88)(69,79,89)(70,80,90)(91,101,111)(92,102,112)(93,103,113)(94,104,114)(95,105,115)(96,106,116)(97,107,117)(98,108,118)(99,109,119)(100,110,120), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,90)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,116)(32,117)(33,118)(34,119)(35,120)(36,91)(37,92)(38,93)(39,94)(40,95)(41,96)(42,97)(43,98)(44,99)(45,100)(46,101)(47,102)(48,103)(49,104)(50,105)(51,106)(52,107)(53,108)(54,109)(55,110)(56,111)(57,112)(58,113)(59,114)(60,115) );

G=PermutationGroup([[(1,52),(2,53),(3,54),(4,55),(5,56),(6,57),(7,58),(8,59),(9,60),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(61,98),(62,99),(63,100),(64,101),(65,102),(66,103),(67,104),(68,105),(69,106),(70,107),(71,108),(72,109),(73,110),(74,111),(75,112),(76,113),(77,114),(78,115),(79,116),(80,117),(81,118),(82,119),(83,120),(84,91),(85,92),(86,93),(87,94),(88,95),(89,96),(90,97)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,21,11),(2,22,12),(3,23,13),(4,24,14),(5,25,15),(6,26,16),(7,27,17),(8,28,18),(9,29,19),(10,30,20),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50),(61,71,81),(62,72,82),(63,73,83),(64,74,84),(65,75,85),(66,76,86),(67,77,87),(68,78,88),(69,79,89),(70,80,90),(91,101,111),(92,102,112),(93,103,113),(94,104,114),(95,105,115),(96,106,116),(97,107,117),(98,108,118),(99,109,119),(100,110,120)], [(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,90),(22,61),(23,62),(24,63),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,116),(32,117),(33,118),(34,119),(35,120),(36,91),(37,92),(38,93),(39,94),(40,95),(41,96),(42,97),(43,98),(44,99),(45,100),(46,101),(47,102),(48,103),(49,104),(50,105),(51,106),(52,107),(53,108),(54,109),(55,110),(56,111),(57,112),(58,113),(59,114),(60,115)]])

180 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C3D3E5A5B5C5D6A···6F6G···6O6P···6W10A···10L10M···10AB15A···15H15I···15T30A···30X30Y···30BH30BI···30CN
order122222223333355556···66···66···610···1010···1015···1515···1530···3030···3030···30
size111133331122211111···12···23···31···13···31···12···21···12···23···3

180 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C5C6C6C10C10C15C30C30S3D6C3xS3C5xS3S3xC6S3xC10S3xC15S3xC30
kernelS3xC2xC30S3xC30C6xC30S3xC2xC10S3xC2xC6S3xC10C2xC30S3xC6C62C22xS3D6C2xC6C2xC30C30C2xC10C2xC6C10C6C22C2
# reps1612412224484881324612824

Matrix representation of S3xC2xC30 in GL4(F31) generated by

1000
03000
0010
0001
,
22000
0500
00280
00028
,
1000
0100
0050
00025
,
30000
03000
0001
0010
G:=sub<GL(4,GF(31))| [1,0,0,0,0,30,0,0,0,0,1,0,0,0,0,1],[22,0,0,0,0,5,0,0,0,0,28,0,0,0,0,28],[1,0,0,0,0,1,0,0,0,0,5,0,0,0,0,25],[30,0,0,0,0,30,0,0,0,0,0,1,0,0,1,0] >;

S3xC2xC30 in GAP, Magma, Sage, TeX

S_3\times C_2\times C_{30}
% in TeX

G:=Group("S3xC2xC30");
// GroupNames label

G:=SmallGroup(360,158);
// by ID

G=gap.SmallGroup(360,158);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-3,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^30=c^3=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<