Extensions 1→N→G→Q→1 with N=C3 and Q=C3×F7

Direct product G=N×Q with N=C3 and Q=C3×F7
dρLabelID
C32×F763C3^2xF7378,47

Semidirect products G=N:Q with N=C3 and Q=C3×F7
extensionφ:Q→Aut NdρLabelID
C3⋊(C3×F7) = C3×C3⋊F7φ: C3×F7/C3×C7⋊C3C2 ⊆ Aut C3426C3:(C3xF7)378,49

Non-split extensions G=N.Q with N=C3 and Q=C3×F7
extensionφ:Q→Aut NdρLabelID
C3.1(C3×F7) = C9×F7central extension (φ=1)636C3.1(C3xF7)378,7
C3.2(C3×F7) = C3×C7⋊C18central extension (φ=1)189C3.2(C3xF7)378,10
C3.3(C3×F7) = C93F7central stem extension (φ=1)636C3.3(C3xF7)378,8
C3.4(C3×F7) = C94F7central stem extension (φ=1)636C3.4(C3xF7)378,9
C3.5(C3×F7) = C32.F7central stem extension (φ=1)636C3.5(C3xF7)378,11
C3.6(C3×F7) = D7⋊He3central stem extension (φ=1)636C3.6(C3xF7)378,12

׿
×
𝔽