Copied to
clipboard

G = C9xF7order 378 = 2·33·7

Direct product of C9 and F7

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C9xF7, C63:9C6, C7:C3:C18, C7:C9:7C6, C7:C18:4C3, C7:1(C3xC18), D7:1(C3xC9), (C9xD7):1C3, C3.1(C3xF7), C21.1(C3xC6), (C3xF7).3C3, (C3xD7).1C32, (C9xC7:C3):3C2, (C3xC7:C3).5C6, SmallGroup(378,7)

Series: Derived Chief Lower central Upper central

C1C7 — C9xF7
C1C7C21C63C9xC7:C3 — C9xF7
C7 — C9xF7
C1C9

Generators and relations for C9xF7
 G = < a,b,c | a9=b7=c6=1, ab=ba, ac=ca, cbc-1=b5 >

Subgroups: 142 in 40 conjugacy classes, 23 normal (13 characteristic)
Quotients: C1, C2, C3, C6, C9, C32, C18, C3xC6, C3xC9, F7, C3xC18, C3xF7, C9xF7
7C2
7C3
7C3
7C3
7C6
7C6
7C6
7C6
7C32
7C9
7C9
7C3xC6
7C18
7C18
7C18
7C3xC9
7C3xC18

Smallest permutation representation of C9xF7
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 35 24 47 39 16 56)(2 36 25 48 40 17 57)(3 28 26 49 41 18 58)(4 29 27 50 42 10 59)(5 30 19 51 43 11 60)(6 31 20 52 44 12 61)(7 32 21 53 45 13 62)(8 33 22 54 37 14 63)(9 34 23 46 38 15 55)
(1 4 7)(2 5 8)(3 6 9)(10 32 47 27 62 39)(11 33 48 19 63 40)(12 34 49 20 55 41)(13 35 50 21 56 42)(14 36 51 22 57 43)(15 28 52 23 58 44)(16 29 53 24 59 45)(17 30 54 25 60 37)(18 31 46 26 61 38)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,35,24,47,39,16,56)(2,36,25,48,40,17,57)(3,28,26,49,41,18,58)(4,29,27,50,42,10,59)(5,30,19,51,43,11,60)(6,31,20,52,44,12,61)(7,32,21,53,45,13,62)(8,33,22,54,37,14,63)(9,34,23,46,38,15,55), (1,4,7)(2,5,8)(3,6,9)(10,32,47,27,62,39)(11,33,48,19,63,40)(12,34,49,20,55,41)(13,35,50,21,56,42)(14,36,51,22,57,43)(15,28,52,23,58,44)(16,29,53,24,59,45)(17,30,54,25,60,37)(18,31,46,26,61,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,35,24,47,39,16,56)(2,36,25,48,40,17,57)(3,28,26,49,41,18,58)(4,29,27,50,42,10,59)(5,30,19,51,43,11,60)(6,31,20,52,44,12,61)(7,32,21,53,45,13,62)(8,33,22,54,37,14,63)(9,34,23,46,38,15,55), (1,4,7)(2,5,8)(3,6,9)(10,32,47,27,62,39)(11,33,48,19,63,40)(12,34,49,20,55,41)(13,35,50,21,56,42)(14,36,51,22,57,43)(15,28,52,23,58,44)(16,29,53,24,59,45)(17,30,54,25,60,37)(18,31,46,26,61,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,35,24,47,39,16,56),(2,36,25,48,40,17,57),(3,28,26,49,41,18,58),(4,29,27,50,42,10,59),(5,30,19,51,43,11,60),(6,31,20,52,44,12,61),(7,32,21,53,45,13,62),(8,33,22,54,37,14,63),(9,34,23,46,38,15,55)], [(1,4,7),(2,5,8),(3,6,9),(10,32,47,27,62,39),(11,33,48,19,63,40),(12,34,49,20,55,41),(13,35,50,21,56,42),(14,36,51,22,57,43),(15,28,52,23,58,44),(16,29,53,24,59,45),(17,30,54,25,60,37),(18,31,46,26,61,38)]])

63 conjugacy classes

class 1  2 3A3B3C···3H6A···6H 7 9A···9F9G···9R18A···18R21A21B63A···63F
order12333···36···679···99···918···18212163···63
size17117···77···761···17···77···7666···6

63 irreducible representations

dim1111111111666
type+++
imageC1C2C3C3C3C6C6C6C9C18F7C3xF7C9xF7
kernelC9xF7C9xC7:C3C7:C18C9xD7C3xF7C7:C9C63C3xC7:C3F7C7:C3C9C3C1
# reps114224221818126

Matrix representation of C9xF7 in GL6(F127)

5200000
0520000
0052000
0005200
0000520
0000052
,
126126126126126126
100000
010000
001000
000100
000010
,
0000190
0019000
1900000
0000019
0001900
0190000

G:=sub<GL(6,GF(127))| [52,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,52,0,0,0,0,0,0,52],[126,1,0,0,0,0,126,0,1,0,0,0,126,0,0,1,0,0,126,0,0,0,1,0,126,0,0,0,0,1,126,0,0,0,0,0],[0,0,19,0,0,0,0,0,0,0,0,19,0,19,0,0,0,0,0,0,0,0,19,0,19,0,0,0,0,0,0,0,0,19,0,0] >;

C9xF7 in GAP, Magma, Sage, TeX

C_9\times F_7
% in TeX

G:=Group("C9xF7");
// GroupNames label

G:=SmallGroup(378,7);
// by ID

G=gap.SmallGroup(378,7);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,57,8104,2709]);
// Polycyclic

G:=Group<a,b,c|a^9=b^7=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C9xF7 in TeX

׿
x
:
Z
F
o
wr
Q
<