Copied to
clipboard

G = C94F7order 378 = 2·33·7

2nd semidirect product of C9 and F7 acting via F7/D7=C3

metacyclic, supersoluble, monomial

Aliases: C94F7, C6311C6, D723- 1+2, C7⋊C92C6, C7⋊C182C3, (C9×D7)⋊3C3, C63⋊C33C2, C3.4(C3×F7), C21.3(C3×C6), (C3×F7).2C3, (C3×D7).3C32, C72(C2×3- 1+2), (C3×C7⋊C3).2C6, SmallGroup(378,9)

Series: Derived Chief Lower central Upper central

C1C21 — C94F7
C1C7C21C63C63⋊C3 — C94F7
C7C21 — C94F7
C1C3C9

Generators and relations for C94F7
 G = < a,b,c | a9=b7=c6=1, ab=ba, cac-1=a4, cbc-1=b5 >

7C2
21C3
7C6
21C6
7C32
7C9
7C9
3C7⋊C3
7C18
7C18
7C3×C6
7C18
73- 1+2
3F7
7C2×3- 1+2

Smallest permutation representation of C94F7
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)
(1 23 59 34 14 44 46)(2 24 60 35 15 45 47)(3 25 61 36 16 37 48)(4 26 62 28 17 38 49)(5 27 63 29 18 39 50)(6 19 55 30 10 40 51)(7 20 56 31 11 41 52)(8 21 57 32 12 42 53)(9 22 58 33 13 43 54)
(2 8 5)(3 6 9)(10 43 25 30 58 48)(11 41 20 31 56 52)(12 39 24 32 63 47)(13 37 19 33 61 51)(14 44 23 34 59 46)(15 42 27 35 57 50)(16 40 22 36 55 54)(17 38 26 28 62 49)(18 45 21 29 60 53)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,23,59,34,14,44,46)(2,24,60,35,15,45,47)(3,25,61,36,16,37,48)(4,26,62,28,17,38,49)(5,27,63,29,18,39,50)(6,19,55,30,10,40,51)(7,20,56,31,11,41,52)(8,21,57,32,12,42,53)(9,22,58,33,13,43,54), (2,8,5)(3,6,9)(10,43,25,30,58,48)(11,41,20,31,56,52)(12,39,24,32,63,47)(13,37,19,33,61,51)(14,44,23,34,59,46)(15,42,27,35,57,50)(16,40,22,36,55,54)(17,38,26,28,62,49)(18,45,21,29,60,53)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63), (1,23,59,34,14,44,46)(2,24,60,35,15,45,47)(3,25,61,36,16,37,48)(4,26,62,28,17,38,49)(5,27,63,29,18,39,50)(6,19,55,30,10,40,51)(7,20,56,31,11,41,52)(8,21,57,32,12,42,53)(9,22,58,33,13,43,54), (2,8,5)(3,6,9)(10,43,25,30,58,48)(11,41,20,31,56,52)(12,39,24,32,63,47)(13,37,19,33,61,51)(14,44,23,34,59,46)(15,42,27,35,57,50)(16,40,22,36,55,54)(17,38,26,28,62,49)(18,45,21,29,60,53) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63)], [(1,23,59,34,14,44,46),(2,24,60,35,15,45,47),(3,25,61,36,16,37,48),(4,26,62,28,17,38,49),(5,27,63,29,18,39,50),(6,19,55,30,10,40,51),(7,20,56,31,11,41,52),(8,21,57,32,12,42,53),(9,22,58,33,13,43,54)], [(2,8,5),(3,6,9),(10,43,25,30,58,48),(11,41,20,31,56,52),(12,39,24,32,63,47),(13,37,19,33,61,51),(14,44,23,34,59,46),(15,42,27,35,57,50),(16,40,22,36,55,54),(17,38,26,28,62,49),(18,45,21,29,60,53)]])

31 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D 7 9A9B9C9D9E9F18A···18F21A21B63A···63F
order1233336666799999918···18212163···63
size171121217721216332121212121···21666···6

31 irreducible representations

dim1111111133666
type+++
imageC1C2C3C3C3C6C6C63- 1+2C2×3- 1+2F7C3×F7C94F7
kernelC94F7C63⋊C3C7⋊C18C9×D7C3×F7C7⋊C9C63C3×C7⋊C3D7C7C9C3C1
# reps1142242222126

Matrix representation of C94F7 in GL6(𝔽127)

85012177121
691601313
114120781201140
011412078120114
131306916
12177121085
,
126126126126126126
100000
010000
001000
000100
000010
,
100000
000001
000100
010000
126126126126126126
000010

G:=sub<GL(6,GF(127))| [85,6,114,0,13,121,0,91,120,114,13,7,121,6,78,120,0,7,7,0,120,78,6,121,7,13,114,120,91,0,121,13,0,114,6,85],[126,1,0,0,0,0,126,0,1,0,0,0,126,0,0,1,0,0,126,0,0,0,1,0,126,0,0,0,0,1,126,0,0,0,0,0],[1,0,0,0,126,0,0,0,0,1,126,0,0,0,0,0,126,0,0,0,1,0,126,0,0,0,0,0,126,1,0,1,0,0,126,0] >;

C94F7 in GAP, Magma, Sage, TeX

C_9\rtimes_4F_7
% in TeX

G:=Group("C9:4F7");
// GroupNames label

G:=SmallGroup(378,9);
// by ID

G=gap.SmallGroup(378,9);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,187,102,8104,2709]);
// Polycyclic

G:=Group<a,b,c|a^9=b^7=c^6=1,a*b=b*a,c*a*c^-1=a^4,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C94F7 in TeX

׿
×
𝔽