Extensions 1→N→G→Q→1 with N=C5×C3⋊S3 and Q=C4

Direct product G=N×Q with N=C5×C3⋊S3 and Q=C4
dρLabelID
C3⋊S3×C20180C3:S3xC20360,106

Semidirect products G=N:Q with N=C5×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×C3⋊S3)⋊1C4 = C32⋊F5⋊C2φ: C4/C1C4 ⊆ Out C5×C3⋊S3308+(C5xC3:S3):1C4360,131
(C5×C3⋊S3)⋊2C4 = C3⋊S3×F5φ: C4/C1C4 ⊆ Out C5×C3⋊S345(C5xC3:S3):2C4360,127
(C5×C3⋊S3)⋊3C4 = C3⋊F5⋊S3φ: C4/C1C4 ⊆ Out C5×C3⋊S3308+(C5xC3:S3):3C4360,129
(C5×C3⋊S3)⋊4C4 = C3⋊S3×Dic5φ: C4/C2C2 ⊆ Out C5×C3⋊S3180(C5xC3:S3):4C4360,66
(C5×C3⋊S3)⋊5C4 = Dic15⋊S3φ: C4/C2C2 ⊆ Out C5×C3⋊S3604(C5xC3:S3):5C4360,85
(C5×C3⋊S3)⋊6C4 = C5×C6.D6φ: C4/C2C2 ⊆ Out C5×C3⋊S3604(C5xC3:S3):6C4360,73
(C5×C3⋊S3)⋊7C4 = C10×C32⋊C4φ: C4/C2C2 ⊆ Out C5×C3⋊S3604(C5xC3:S3):7C4360,148
(C5×C3⋊S3)⋊8C4 = C2×C32⋊Dic5φ: C4/C2C2 ⊆ Out C5×C3⋊S3604(C5xC3:S3):8C4360,149

Non-split extensions G=N.Q with N=C5×C3⋊S3 and Q=C4
extensionφ:Q→Out NdρLabelID
(C5×C3⋊S3).1C4 = C5×F9φ: C4/C1C4 ⊆ Out C5×C3⋊S3458(C5xC3:S3).1C4360,123
(C5×C3⋊S3).2C4 = C52F9φ: C4/C1C4 ⊆ Out C5×C3⋊S3458(C5xC3:S3).2C4360,124
(C5×C3⋊S3).3C4 = C5⋊F9φ: C4/C1C4 ⊆ Out C5×C3⋊S3458(C5xC3:S3).3C4360,125

׿
×
𝔽