Copied to
clipboard

G = C5⋊F9order 360 = 23·32·5

The semidirect product of C5 and F9 acting via F9/C3⋊S3=C4

metabelian, soluble, monomial, A-group

Aliases: C5⋊F9, C32⋊(C5⋊C8), C3⋊S3.F5, (C3×C15)⋊3C8, C32⋊Dic5.1C2, (C5×C3⋊S3).3C4, SmallGroup(360,125)

Series: Derived Chief Lower central Upper central

C1C3×C15 — C5⋊F9
C1C5C3×C15C5×C3⋊S3C32⋊Dic5 — C5⋊F9
C3×C15 — C5⋊F9
C1

Generators and relations for C5⋊F9
 G = < a,b,c,d | a5=b3=c3=d8=1, ab=ba, ac=ca, dad-1=a3, dbd-1=bc=cb, dcd-1=b >

9C2
4C3
45C4
12S3
9C10
4C15
45C8
9Dic5
12C5×S3
5C32⋊C4
9C5⋊C8
5F9

Character table of C5⋊F9

 class 1234A4B58A8B8C8D1015A15B15C15D
 size 1984545445454545368888
ρ1111111111111111    trivial
ρ2111111-1-1-1-111111    linear of order 2
ρ3111-1-11i-ii-i11111    linear of order 4
ρ4111-1-11-ii-ii11111    linear of order 4
ρ51-11-ii1ζ8ζ83ζ85ζ87-11111    linear of order 8
ρ61-11i-i1ζ83ζ8ζ87ζ85-11111    linear of order 8
ρ71-11-ii1ζ85ζ87ζ8ζ83-11111    linear of order 8
ρ81-11i-i1ζ87ζ85ζ83ζ8-11111    linear of order 8
ρ944400-10000-1-1-1-1-1    orthogonal lifted from F5
ρ104-4400-100001-1-1-1-1    symplectic lifted from C5⋊C8, Schur index 2
ρ1180-100800000-1-1-1-1    orthogonal lifted from F9
ρ1280-100-2000005+154+152+153+1    complex faithful
ρ1380-100-20000052+153+154+15+1    complex faithful
ρ1480-100-20000053+152+15+154+1    complex faithful
ρ1580-100-20000054+15+153+152+1    complex faithful

Smallest permutation representation of C5⋊F9
On 45 points
Generators in S45
(1 4 5 3 2)(6 35 39 24 20)(7 25 36 21 40)(8 14 26 41 37)(9 42 15 30 27)(10 31 43 28 16)(11 29 32 17 44)(12 18 22 45 33)(13 38 19 34 23)
(1 29 25)(2 11 7)(3 44 40)(4 32 36)(5 17 21)(6 37 38)(8 19 35)(9 45 16)(10 42 33)(12 31 15)(13 20 41)(14 34 39)(18 43 30)(22 28 27)(23 24 26)
(1 22 26)(2 18 14)(3 12 8)(4 45 41)(5 33 37)(6 21 42)(7 30 39)(9 20 36)(10 38 17)(11 43 34)(13 32 16)(15 35 40)(19 44 31)(23 29 28)(24 25 27)
(2 3 4 5)(6 7 8 9 10 11 12 13)(14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29)(30 31 32 33 34 35 36 37)(38 39 40 41 42 43 44 45)

G:=sub<Sym(45)| (1,4,5,3,2)(6,35,39,24,20)(7,25,36,21,40)(8,14,26,41,37)(9,42,15,30,27)(10,31,43,28,16)(11,29,32,17,44)(12,18,22,45,33)(13,38,19,34,23), (1,29,25)(2,11,7)(3,44,40)(4,32,36)(5,17,21)(6,37,38)(8,19,35)(9,45,16)(10,42,33)(12,31,15)(13,20,41)(14,34,39)(18,43,30)(22,28,27)(23,24,26), (1,22,26)(2,18,14)(3,12,8)(4,45,41)(5,33,37)(6,21,42)(7,30,39)(9,20,36)(10,38,17)(11,43,34)(13,32,16)(15,35,40)(19,44,31)(23,29,28)(24,25,27), (2,3,4,5)(6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45)>;

G:=Group( (1,4,5,3,2)(6,35,39,24,20)(7,25,36,21,40)(8,14,26,41,37)(9,42,15,30,27)(10,31,43,28,16)(11,29,32,17,44)(12,18,22,45,33)(13,38,19,34,23), (1,29,25)(2,11,7)(3,44,40)(4,32,36)(5,17,21)(6,37,38)(8,19,35)(9,45,16)(10,42,33)(12,31,15)(13,20,41)(14,34,39)(18,43,30)(22,28,27)(23,24,26), (1,22,26)(2,18,14)(3,12,8)(4,45,41)(5,33,37)(6,21,42)(7,30,39)(9,20,36)(10,38,17)(11,43,34)(13,32,16)(15,35,40)(19,44,31)(23,29,28)(24,25,27), (2,3,4,5)(6,7,8,9,10,11,12,13)(14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29)(30,31,32,33,34,35,36,37)(38,39,40,41,42,43,44,45) );

G=PermutationGroup([[(1,4,5,3,2),(6,35,39,24,20),(7,25,36,21,40),(8,14,26,41,37),(9,42,15,30,27),(10,31,43,28,16),(11,29,32,17,44),(12,18,22,45,33),(13,38,19,34,23)], [(1,29,25),(2,11,7),(3,44,40),(4,32,36),(5,17,21),(6,37,38),(8,19,35),(9,45,16),(10,42,33),(12,31,15),(13,20,41),(14,34,39),(18,43,30),(22,28,27),(23,24,26)], [(1,22,26),(2,18,14),(3,12,8),(4,45,41),(5,33,37),(6,21,42),(7,30,39),(9,20,36),(10,38,17),(11,43,34),(13,32,16),(15,35,40),(19,44,31),(23,29,28),(24,25,27)], [(2,3,4,5),(6,7,8,9,10,11,12,13),(14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29),(30,31,32,33,34,35,36,37),(38,39,40,41,42,43,44,45)]])

Matrix representation of C5⋊F9 in GL8(𝔽241)

01000000
00100000
00010000
2402402402400000
00000100
00000010
14317992198621490
241111061291966413391
,
00001000
00000100
00000010
14317992198621490
18619721394240000
14792103119024000
12228214225002400
8293213229175701821
,
2794120154111721121
22129228207861302391
20513162158710623687
194761251741744387205
00000001
241111061291966413391
1076317440224717287
148192166286617159240
,
10000000
00010000
01000000
2402402402400000
00000001
134245202168107132205
241111061291966413391
8293213229175701821

G:=sub<GL(8,GF(241))| [0,0,0,240,0,0,143,24,1,0,0,240,0,0,179,111,0,1,0,240,0,0,92,106,0,0,1,240,0,0,1,129,0,0,0,0,0,0,98,196,0,0,0,0,1,0,62,64,0,0,0,0,0,1,149,133,0,0,0,0,0,0,0,91],[0,0,0,143,186,147,122,82,0,0,0,179,197,92,28,93,0,0,0,92,213,103,214,213,0,0,0,1,94,119,225,229,1,0,0,98,240,0,0,175,0,1,0,62,0,240,0,70,0,0,1,149,0,0,240,182,0,0,0,0,0,0,0,1],[27,221,205,194,0,24,107,148,94,29,13,76,0,111,63,192,120,228,16,125,0,106,174,166,154,207,215,174,0,129,40,28,111,86,87,174,0,196,22,66,72,130,106,43,0,64,47,171,112,23,236,87,0,133,172,59,1,91,87,205,1,91,87,240],[1,0,0,240,0,134,24,82,0,0,1,240,0,24,111,93,0,0,0,240,0,5,106,213,0,1,0,240,0,202,129,229,0,0,0,0,0,168,196,175,0,0,0,0,0,107,64,70,0,0,0,0,0,132,133,182,0,0,0,0,1,205,91,1] >;

C5⋊F9 in GAP, Magma, Sage, TeX

C_5\rtimes F_9
% in TeX

G:=Group("C5:F9");
// GroupNames label

G:=SmallGroup(360,125);
// by ID

G=gap.SmallGroup(360,125);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,3,-5,12,31,1155,681,111,1204,970,376,5189,5195]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^3=c^3=d^8=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^3,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of C5⋊F9 in TeX
Character table of C5⋊F9 in TeX

׿
×
𝔽