Copied to
clipboard

G = C5×C6.D6order 360 = 23·32·5

Direct product of C5 and C6.D6

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C5×C6.D6, C30.36D6, C3⋊S31C20, C31(S3×C20), C10.14S32, C1512(C4×S3), C6.2(S3×C10), C323(C2×C20), (C5×Dic3)⋊5S3, Dic32(C5×S3), (C3×Dic3)⋊3C10, (Dic3×C15)⋊9C2, (C3×C30).28C22, C2.2(C5×S32), (C5×C3⋊S3)⋊6C4, (C3×C15)⋊25(C2×C4), (C2×C3⋊S3).1C10, (C10×C3⋊S3).3C2, (C3×C6).2(C2×C10), SmallGroup(360,73)

Series: Derived Chief Lower central Upper central

C1C32 — C5×C6.D6
C1C3C32C3×C6C3×C30Dic3×C15 — C5×C6.D6
C32 — C5×C6.D6
C1C10

Generators and relations for C5×C6.D6
 G = < a,b,c,d | a5=b6=d2=1, c6=b3, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c5 >

Subgroups: 220 in 74 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C22, C5, S3, C6, C6, C2×C4, C32, C10, C10, Dic3, C12, D6, C15, C15, C3⋊S3, C3×C6, C20, C2×C10, C4×S3, C5×S3, C30, C30, C3×Dic3, C2×C3⋊S3, C2×C20, C3×C15, C5×Dic3, C60, S3×C10, C6.D6, C5×C3⋊S3, C3×C30, S3×C20, Dic3×C15, C10×C3⋊S3, C5×C6.D6
Quotients: C1, C2, C4, C22, C5, S3, C2×C4, C10, D6, C20, C2×C10, C4×S3, C5×S3, S32, C2×C20, S3×C10, C6.D6, S3×C20, C5×S32, C5×C6.D6

Smallest permutation representation of C5×C6.D6
On 60 points
Generators in S60
(1 44 26 20 50)(2 45 27 21 51)(3 46 28 22 52)(4 47 29 23 53)(5 48 30 24 54)(6 37 31 13 55)(7 38 32 14 56)(8 39 33 15 57)(9 40 34 16 58)(10 41 35 17 59)(11 42 36 18 60)(12 43 25 19 49)
(1 11 9 7 5 3)(2 4 6 8 10 12)(13 15 17 19 21 23)(14 24 22 20 18 16)(25 27 29 31 33 35)(26 36 34 32 30 28)(37 39 41 43 45 47)(38 48 46 44 42 40)(49 51 53 55 57 59)(50 60 58 56 54 52)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 9)(3 7)(4 12)(6 10)(13 17)(14 22)(16 20)(19 23)(25 29)(26 34)(28 32)(31 35)(37 41)(38 46)(40 44)(43 47)(49 53)(50 58)(52 56)(55 59)

G:=sub<Sym(60)| (1,44,26,20,50)(2,45,27,21,51)(3,46,28,22,52)(4,47,29,23,53)(5,48,30,24,54)(6,37,31,13,55)(7,38,32,14,56)(8,39,33,15,57)(9,40,34,16,58)(10,41,35,17,59)(11,42,36,18,60)(12,43,25,19,49), (1,11,9,7,5,3)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40)(49,51,53,55,57,59)(50,60,58,56,54,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,9)(3,7)(4,12)(6,10)(13,17)(14,22)(16,20)(19,23)(25,29)(26,34)(28,32)(31,35)(37,41)(38,46)(40,44)(43,47)(49,53)(50,58)(52,56)(55,59)>;

G:=Group( (1,44,26,20,50)(2,45,27,21,51)(3,46,28,22,52)(4,47,29,23,53)(5,48,30,24,54)(6,37,31,13,55)(7,38,32,14,56)(8,39,33,15,57)(9,40,34,16,58)(10,41,35,17,59)(11,42,36,18,60)(12,43,25,19,49), (1,11,9,7,5,3)(2,4,6,8,10,12)(13,15,17,19,21,23)(14,24,22,20,18,16)(25,27,29,31,33,35)(26,36,34,32,30,28)(37,39,41,43,45,47)(38,48,46,44,42,40)(49,51,53,55,57,59)(50,60,58,56,54,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,9)(3,7)(4,12)(6,10)(13,17)(14,22)(16,20)(19,23)(25,29)(26,34)(28,32)(31,35)(37,41)(38,46)(40,44)(43,47)(49,53)(50,58)(52,56)(55,59) );

G=PermutationGroup([[(1,44,26,20,50),(2,45,27,21,51),(3,46,28,22,52),(4,47,29,23,53),(5,48,30,24,54),(6,37,31,13,55),(7,38,32,14,56),(8,39,33,15,57),(9,40,34,16,58),(10,41,35,17,59),(11,42,36,18,60),(12,43,25,19,49)], [(1,11,9,7,5,3),(2,4,6,8,10,12),(13,15,17,19,21,23),(14,24,22,20,18,16),(25,27,29,31,33,35),(26,36,34,32,30,28),(37,39,41,43,45,47),(38,48,46,44,42,40),(49,51,53,55,57,59),(50,60,58,56,54,52)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,9),(3,7),(4,12),(6,10),(13,17),(14,22),(16,20),(19,23),(25,29),(26,34),(28,32),(31,35),(37,41),(38,46),(40,44),(43,47),(49,53),(50,58),(52,56),(55,59)]])

90 conjugacy classes

class 1 2A2B2C3A3B3C4A4B4C4D5A5B5C5D6A6B6C10A10B10C10D10E···10L12A12B12C12D15A···15H15I15J15K15L20A···20P30A···30H30I30J30K30L60A···60P
order1222333444455556661010101010···101212121215···151515151520···2030···303030303060···60
size11992243333111122411119···966662···244443···32···244446···6

90 irreducible representations

dim111111112222224444
type+++++++
imageC1C2C2C4C5C10C10C20S3D6C4×S3C5×S3S3×C10S3×C20S32C6.D6C5×S32C5×C6.D6
kernelC5×C6.D6Dic3×C15C10×C3⋊S3C5×C3⋊S3C6.D6C3×Dic3C2×C3⋊S3C3⋊S3C5×Dic3C30C15Dic3C6C3C10C5C2C1
# reps12144841622488161144

Matrix representation of C5×C6.D6 in GL4(𝔽61) generated by

58000
05800
00200
00020
,
0100
60100
0010
0001
,
501100
01100
0001
006060
,
16000
06000
006060
0001
G:=sub<GL(4,GF(61))| [58,0,0,0,0,58,0,0,0,0,20,0,0,0,0,20],[0,60,0,0,1,1,0,0,0,0,1,0,0,0,0,1],[50,0,0,0,11,11,0,0,0,0,0,60,0,0,1,60],[1,0,0,0,60,60,0,0,0,0,60,0,0,0,60,1] >;

C5×C6.D6 in GAP, Magma, Sage, TeX

C_5\times C_6.D_6
% in TeX

G:=Group("C5xC6.D6");
// GroupNames label

G:=SmallGroup(360,73);
// by ID

G=gap.SmallGroup(360,73);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-3,-3,120,127,1210,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^6=d^2=1,c^6=b^3,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^5>;
// generators/relations

׿
×
𝔽