d | ρ | Label | ID | ||
---|---|---|---|---|---|
D5×C3×C12 | 180 | D5xC3xC12 | 360,91 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C12)⋊1D5 = C60⋊S3 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 180 | (C3xC12):1D5 | 360,112 | |
(C3×C12)⋊2D5 = C3×D60 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 120 | 2 | (C3xC12):2D5 | 360,102 |
(C3×C12)⋊3D5 = C12×D15 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 120 | 2 | (C3xC12):3D5 | 360,101 |
(C3×C12)⋊4D5 = C4×C3⋊D15 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 180 | (C3xC12):4D5 | 360,111 | |
(C3×C12)⋊5D5 = C32×D20 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 180 | (C3xC12):5D5 | 360,92 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C12).1D5 = C12.D15 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 360 | (C3xC12).1D5 | 360,110 | |
(C3×C12).2D5 = C3×Dic30 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 120 | 2 | (C3xC12).2D5 | 360,100 |
(C3×C12).3D5 = C3×C15⋊3C8 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 120 | 2 | (C3xC12).3D5 | 360,35 |
(C3×C12).4D5 = C60.S3 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 360 | (C3xC12).4D5 | 360,37 | |
(C3×C12).5D5 = C32×Dic10 | φ: D5/C5 → C2 ⊆ Aut C3×C12 | 360 | (C3xC12).5D5 | 360,90 | |
(C3×C12).6D5 = C32×C5⋊2C8 | central extension (φ=1) | 360 | (C3xC12).6D5 | 360,33 |