Extensions 1→N→G→Q→1 with N=C3xC12 and Q=D5

Direct product G=NxQ with N=C3xC12 and Q=D5
dρLabelID
D5xC3xC12180D5xC3xC12360,91

Semidirect products G=N:Q with N=C3xC12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3xC12):1D5 = C60:S3φ: D5/C5C2 ⊆ Aut C3xC12180(C3xC12):1D5360,112
(C3xC12):2D5 = C3xD60φ: D5/C5C2 ⊆ Aut C3xC121202(C3xC12):2D5360,102
(C3xC12):3D5 = C12xD15φ: D5/C5C2 ⊆ Aut C3xC121202(C3xC12):3D5360,101
(C3xC12):4D5 = C4xC3:D15φ: D5/C5C2 ⊆ Aut C3xC12180(C3xC12):4D5360,111
(C3xC12):5D5 = C32xD20φ: D5/C5C2 ⊆ Aut C3xC12180(C3xC12):5D5360,92

Non-split extensions G=N.Q with N=C3xC12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3xC12).1D5 = C12.D15φ: D5/C5C2 ⊆ Aut C3xC12360(C3xC12).1D5360,110
(C3xC12).2D5 = C3xDic30φ: D5/C5C2 ⊆ Aut C3xC121202(C3xC12).2D5360,100
(C3xC12).3D5 = C3xC15:3C8φ: D5/C5C2 ⊆ Aut C3xC121202(C3xC12).3D5360,35
(C3xC12).4D5 = C60.S3φ: D5/C5C2 ⊆ Aut C3xC12360(C3xC12).4D5360,37
(C3xC12).5D5 = C32xDic10φ: D5/C5C2 ⊆ Aut C3xC12360(C3xC12).5D5360,90
(C3xC12).6D5 = C32xC5:2C8central extension (φ=1)360(C3xC12).6D5360,33

׿
x
:
Z
F
o
wr
Q
<