Extensions 1→N→G→Q→1 with N=C3×C12 and Q=D5

Direct product G=N×Q with N=C3×C12 and Q=D5
dρLabelID
D5×C3×C12180D5xC3xC12360,91

Semidirect products G=N:Q with N=C3×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3×C12)⋊1D5 = C60⋊S3φ: D5/C5C2 ⊆ Aut C3×C12180(C3xC12):1D5360,112
(C3×C12)⋊2D5 = C3×D60φ: D5/C5C2 ⊆ Aut C3×C121202(C3xC12):2D5360,102
(C3×C12)⋊3D5 = C12×D15φ: D5/C5C2 ⊆ Aut C3×C121202(C3xC12):3D5360,101
(C3×C12)⋊4D5 = C4×C3⋊D15φ: D5/C5C2 ⊆ Aut C3×C12180(C3xC12):4D5360,111
(C3×C12)⋊5D5 = C32×D20φ: D5/C5C2 ⊆ Aut C3×C12180(C3xC12):5D5360,92

Non-split extensions G=N.Q with N=C3×C12 and Q=D5
extensionφ:Q→Aut NdρLabelID
(C3×C12).1D5 = C12.D15φ: D5/C5C2 ⊆ Aut C3×C12360(C3xC12).1D5360,110
(C3×C12).2D5 = C3×Dic30φ: D5/C5C2 ⊆ Aut C3×C121202(C3xC12).2D5360,100
(C3×C12).3D5 = C3×C153C8φ: D5/C5C2 ⊆ Aut C3×C121202(C3xC12).3D5360,35
(C3×C12).4D5 = C60.S3φ: D5/C5C2 ⊆ Aut C3×C12360(C3xC12).4D5360,37
(C3×C12).5D5 = C32×Dic10φ: D5/C5C2 ⊆ Aut C3×C12360(C3xC12).5D5360,90
(C3×C12).6D5 = C32×C52C8central extension (φ=1)360(C3xC12).6D5360,33

׿
×
𝔽