Copied to
clipboard

G = C12xD15order 360 = 23·32·5

Direct product of C12 and D15

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C12xD15, C60:2C6, C60:5S3, D30.2C6, C30.52D6, C6.20D30, Dic15:5C6, C5:3(S3xC12), C20:2(C3xS3), (C3xC60):4C2, C3:2(D5xC12), (C3xC12):3D5, C12:2(C3xD5), C6.9(C6xD5), C15:14(C4xS3), C32:7(C4xD5), C15:7(C2xC12), C10.9(S3xC6), C30.9(C2xC6), C2.1(C6xD15), (C6xD15).4C2, (C3xC6).28D10, (C3xDic15):11C2, (C3xC30).38C22, (C3xC15):27(C2xC4), SmallGroup(360,101)

Series: Derived Chief Lower central Upper central

C1C15 — C12xD15
C1C5C15C30C3xC30C6xD15 — C12xD15
C15 — C12xD15
C1C12

Generators and relations for C12xD15
 G = < a,b,c | a12=b15=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 276 in 70 conjugacy classes, 34 normal (30 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C5, S3, C6, C6, C2xC4, C32, D5, C10, Dic3, C12, C12, D6, C2xC6, C15, C15, C3xS3, C3xC6, Dic5, C20, D10, C4xS3, C2xC12, C3xD5, D15, C30, C30, C3xDic3, C3xC12, S3xC6, C4xD5, C3xC15, C3xDic5, Dic15, C60, C60, C6xD5, D30, S3xC12, C3xD15, C3xC30, D5xC12, C4xD15, C3xDic15, C3xC60, C6xD15, C12xD15
Quotients: C1, C2, C3, C4, C22, S3, C6, C2xC4, D5, C12, D6, C2xC6, C3xS3, D10, C4xS3, C2xC12, C3xD5, D15, S3xC6, C4xD5, C6xD5, D30, S3xC12, C3xD15, D5xC12, C4xD15, C6xD15, C12xD15

Smallest permutation representation of C12xD15
On 120 points
Generators in S120
(1 59 26 32 6 49 16 37 11 54 21 42)(2 60 27 33 7 50 17 38 12 55 22 43)(3 46 28 34 8 51 18 39 13 56 23 44)(4 47 29 35 9 52 19 40 14 57 24 45)(5 48 30 36 10 53 20 41 15 58 25 31)(61 114 88 92 71 109 83 102 66 119 78 97)(62 115 89 93 72 110 84 103 67 120 79 98)(63 116 90 94 73 111 85 104 68 106 80 99)(64 117 76 95 74 112 86 105 69 107 81 100)(65 118 77 96 75 113 87 91 70 108 82 101)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 81)(2 80)(3 79)(4 78)(5 77)(6 76)(7 90)(8 89)(9 88)(10 87)(11 86)(12 85)(13 84)(14 83)(15 82)(16 74)(17 73)(18 72)(19 71)(20 70)(21 69)(22 68)(23 67)(24 66)(25 65)(26 64)(27 63)(28 62)(29 61)(30 75)(31 118)(32 117)(33 116)(34 115)(35 114)(36 113)(37 112)(38 111)(39 110)(40 109)(41 108)(42 107)(43 106)(44 120)(45 119)(46 98)(47 97)(48 96)(49 95)(50 94)(51 93)(52 92)(53 91)(54 105)(55 104)(56 103)(57 102)(58 101)(59 100)(60 99)

G:=sub<Sym(120)| (1,59,26,32,6,49,16,37,11,54,21,42)(2,60,27,33,7,50,17,38,12,55,22,43)(3,46,28,34,8,51,18,39,13,56,23,44)(4,47,29,35,9,52,19,40,14,57,24,45)(5,48,30,36,10,53,20,41,15,58,25,31)(61,114,88,92,71,109,83,102,66,119,78,97)(62,115,89,93,72,110,84,103,67,120,79,98)(63,116,90,94,73,111,85,104,68,106,80,99)(64,117,76,95,74,112,86,105,69,107,81,100)(65,118,77,96,75,113,87,91,70,108,82,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,81)(2,80)(3,79)(4,78)(5,77)(6,76)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,74)(17,73)(18,72)(19,71)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(29,61)(30,75)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,120)(45,119)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99)>;

G:=Group( (1,59,26,32,6,49,16,37,11,54,21,42)(2,60,27,33,7,50,17,38,12,55,22,43)(3,46,28,34,8,51,18,39,13,56,23,44)(4,47,29,35,9,52,19,40,14,57,24,45)(5,48,30,36,10,53,20,41,15,58,25,31)(61,114,88,92,71,109,83,102,66,119,78,97)(62,115,89,93,72,110,84,103,67,120,79,98)(63,116,90,94,73,111,85,104,68,106,80,99)(64,117,76,95,74,112,86,105,69,107,81,100)(65,118,77,96,75,113,87,91,70,108,82,101), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,81)(2,80)(3,79)(4,78)(5,77)(6,76)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,74)(17,73)(18,72)(19,71)(20,70)(21,69)(22,68)(23,67)(24,66)(25,65)(26,64)(27,63)(28,62)(29,61)(30,75)(31,118)(32,117)(33,116)(34,115)(35,114)(36,113)(37,112)(38,111)(39,110)(40,109)(41,108)(42,107)(43,106)(44,120)(45,119)(46,98)(47,97)(48,96)(49,95)(50,94)(51,93)(52,92)(53,91)(54,105)(55,104)(56,103)(57,102)(58,101)(59,100)(60,99) );

G=PermutationGroup([[(1,59,26,32,6,49,16,37,11,54,21,42),(2,60,27,33,7,50,17,38,12,55,22,43),(3,46,28,34,8,51,18,39,13,56,23,44),(4,47,29,35,9,52,19,40,14,57,24,45),(5,48,30,36,10,53,20,41,15,58,25,31),(61,114,88,92,71,109,83,102,66,119,78,97),(62,115,89,93,72,110,84,103,67,120,79,98),(63,116,90,94,73,111,85,104,68,106,80,99),(64,117,76,95,74,112,86,105,69,107,81,100),(65,118,77,96,75,113,87,91,70,108,82,101)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,81),(2,80),(3,79),(4,78),(5,77),(6,76),(7,90),(8,89),(9,88),(10,87),(11,86),(12,85),(13,84),(14,83),(15,82),(16,74),(17,73),(18,72),(19,71),(20,70),(21,69),(22,68),(23,67),(24,66),(25,65),(26,64),(27,63),(28,62),(29,61),(30,75),(31,118),(32,117),(33,116),(34,115),(35,114),(36,113),(37,112),(38,111),(39,110),(40,109),(41,108),(42,107),(43,106),(44,120),(45,119),(46,98),(47,97),(48,96),(49,95),(50,94),(51,93),(52,92),(53,91),(54,105),(55,104),(56,103),(57,102),(58,101),(59,100),(60,99)]])

108 conjugacy classes

class 1 2A2B2C3A3B3C3D3E4A4B4C4D5A5B6A6B6C6D6E6F6G6H6I10A10B12A12B12C12D12E···12J12K12L12M12N15A···15P20A20B20C20D30A···30P60A···60AF
order12223333344445566666666610101212121212···121212121215···152020202030···3060···60
size111515112221115152211222151515152211112···2151515152···222222···22···2

108 irreducible representations

dim1111111111222222222222222222
type++++++++++
imageC1C2C2C2C3C4C6C6C6C12S3D5D6C3xS3D10C4xS3C3xD5D15S3xC6C4xD5C6xD5D30S3xC12C3xD15D5xC12C4xD15C6xD15C12xD15
kernelC12xD15C3xDic15C3xC60C6xD15C4xD15C3xD15Dic15C60D30D15C60C3xC12C30C20C3xC6C15C12C12C10C32C6C6C5C4C3C3C2C1
# reps11112422281212224424444888816

Matrix representation of C12xD15 in GL4(F61) generated by

40000
04000
00110
00011
,
47000
01300
0090
00634
,
04800
14000
00531
001356
G:=sub<GL(4,GF(61))| [40,0,0,0,0,40,0,0,0,0,11,0,0,0,0,11],[47,0,0,0,0,13,0,0,0,0,9,6,0,0,0,34],[0,14,0,0,48,0,0,0,0,0,5,13,0,0,31,56] >;

C12xD15 in GAP, Magma, Sage, TeX

C_{12}\times D_{15}
% in TeX

G:=Group("C12xD15");
// GroupNames label

G:=SmallGroup(360,101);
// by ID

G=gap.SmallGroup(360,101);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-3,-5,79,1444,10373]);
// Polycyclic

G:=Group<a,b,c|a^12=b^15=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<