metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D191, C191⋊C2, sometimes denoted D382 or Dih191 or Dih382, SmallGroup(382,1)
Series: Derived ►Chief ►Lower central ►Upper central
C191 — D191 |
Generators and relations for D191
G = < a,b | a191=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191)
(1 191)(2 190)(3 189)(4 188)(5 187)(6 186)(7 185)(8 184)(9 183)(10 182)(11 181)(12 180)(13 179)(14 178)(15 177)(16 176)(17 175)(18 174)(19 173)(20 172)(21 171)(22 170)(23 169)(24 168)(25 167)(26 166)(27 165)(28 164)(29 163)(30 162)(31 161)(32 160)(33 159)(34 158)(35 157)(36 156)(37 155)(38 154)(39 153)(40 152)(41 151)(42 150)(43 149)(44 148)(45 147)(46 146)(47 145)(48 144)(49 143)(50 142)(51 141)(52 140)(53 139)(54 138)(55 137)(56 136)(57 135)(58 134)(59 133)(60 132)(61 131)(62 130)(63 129)(64 128)(65 127)(66 126)(67 125)(68 124)(69 123)(70 122)(71 121)(72 120)(73 119)(74 118)(75 117)(76 116)(77 115)(78 114)(79 113)(80 112)(81 111)(82 110)(83 109)(84 108)(85 107)(86 106)(87 105)(88 104)(89 103)(90 102)(91 101)(92 100)(93 99)(94 98)(95 97)
G:=sub<Sym(191)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191), (1,191)(2,190)(3,189)(4,188)(5,187)(6,186)(7,185)(8,184)(9,183)(10,182)(11,181)(12,180)(13,179)(14,178)(15,177)(16,176)(17,175)(18,174)(19,173)(20,172)(21,171)(22,170)(23,169)(24,168)(25,167)(26,166)(27,165)(28,164)(29,163)(30,162)(31,161)(32,160)(33,159)(34,158)(35,157)(36,156)(37,155)(38,154)(39,153)(40,152)(41,151)(42,150)(43,149)(44,148)(45,147)(46,146)(47,145)(48,144)(49,143)(50,142)(51,141)(52,140)(53,139)(54,138)(55,137)(56,136)(57,135)(58,134)(59,133)(60,132)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,120)(73,119)(74,118)(75,117)(76,116)(77,115)(78,114)(79,113)(80,112)(81,111)(82,110)(83,109)(84,108)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191), (1,191)(2,190)(3,189)(4,188)(5,187)(6,186)(7,185)(8,184)(9,183)(10,182)(11,181)(12,180)(13,179)(14,178)(15,177)(16,176)(17,175)(18,174)(19,173)(20,172)(21,171)(22,170)(23,169)(24,168)(25,167)(26,166)(27,165)(28,164)(29,163)(30,162)(31,161)(32,160)(33,159)(34,158)(35,157)(36,156)(37,155)(38,154)(39,153)(40,152)(41,151)(42,150)(43,149)(44,148)(45,147)(46,146)(47,145)(48,144)(49,143)(50,142)(51,141)(52,140)(53,139)(54,138)(55,137)(56,136)(57,135)(58,134)(59,133)(60,132)(61,131)(62,130)(63,129)(64,128)(65,127)(66,126)(67,125)(68,124)(69,123)(70,122)(71,121)(72,120)(73,119)(74,118)(75,117)(76,116)(77,115)(78,114)(79,113)(80,112)(81,111)(82,110)(83,109)(84,108)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191)], [(1,191),(2,190),(3,189),(4,188),(5,187),(6,186),(7,185),(8,184),(9,183),(10,182),(11,181),(12,180),(13,179),(14,178),(15,177),(16,176),(17,175),(18,174),(19,173),(20,172),(21,171),(22,170),(23,169),(24,168),(25,167),(26,166),(27,165),(28,164),(29,163),(30,162),(31,161),(32,160),(33,159),(34,158),(35,157),(36,156),(37,155),(38,154),(39,153),(40,152),(41,151),(42,150),(43,149),(44,148),(45,147),(46,146),(47,145),(48,144),(49,143),(50,142),(51,141),(52,140),(53,139),(54,138),(55,137),(56,136),(57,135),(58,134),(59,133),(60,132),(61,131),(62,130),(63,129),(64,128),(65,127),(66,126),(67,125),(68,124),(69,123),(70,122),(71,121),(72,120),(73,119),(74,118),(75,117),(76,116),(77,115),(78,114),(79,113),(80,112),(81,111),(82,110),(83,109),(84,108),(85,107),(86,106),(87,105),(88,104),(89,103),(90,102),(91,101),(92,100),(93,99),(94,98),(95,97)]])
97 conjugacy classes
class | 1 | 2 | 191A | ··· | 191CQ |
order | 1 | 2 | 191 | ··· | 191 |
size | 1 | 191 | 2 | ··· | 2 |
97 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D191 |
kernel | D191 | C191 | C1 |
# reps | 1 | 1 | 95 |
Matrix representation of D191 ►in GL2(𝔽383) generated by
70 | 382 |
120 | 343 |
88 | 250 |
231 | 295 |
G:=sub<GL(2,GF(383))| [70,120,382,343],[88,231,250,295] >;
D191 in GAP, Magma, Sage, TeX
D_{191}
% in TeX
G:=Group("D191");
// GroupNames label
G:=SmallGroup(382,1);
// by ID
G=gap.SmallGroup(382,1);
# by ID
G:=PCGroup([2,-2,-191,1521]);
// Polycyclic
G:=Group<a,b|a^191=b^2=1,b*a*b=a^-1>;
// generators/relations
Export