metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D193, C193⋊C2, sometimes denoted D386 or Dih193 or Dih386, SmallGroup(386,1)
Series: Derived ►Chief ►Lower central ►Upper central
C193 — D193 |
Generators and relations for D193
G = < a,b | a193=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193)
(1 193)(2 192)(3 191)(4 190)(5 189)(6 188)(7 187)(8 186)(9 185)(10 184)(11 183)(12 182)(13 181)(14 180)(15 179)(16 178)(17 177)(18 176)(19 175)(20 174)(21 173)(22 172)(23 171)(24 170)(25 169)(26 168)(27 167)(28 166)(29 165)(30 164)(31 163)(32 162)(33 161)(34 160)(35 159)(36 158)(37 157)(38 156)(39 155)(40 154)(41 153)(42 152)(43 151)(44 150)(45 149)(46 148)(47 147)(48 146)(49 145)(50 144)(51 143)(52 142)(53 141)(54 140)(55 139)(56 138)(57 137)(58 136)(59 135)(60 134)(61 133)(62 132)(63 131)(64 130)(65 129)(66 128)(67 127)(68 126)(69 125)(70 124)(71 123)(72 122)(73 121)(74 120)(75 119)(76 118)(77 117)(78 116)(79 115)(80 114)(81 113)(82 112)(83 111)(84 110)(85 109)(86 108)(87 107)(88 106)(89 105)(90 104)(91 103)(92 102)(93 101)(94 100)(95 99)(96 98)
G:=sub<Sym(193)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193), (1,193)(2,192)(3,191)(4,190)(5,189)(6,188)(7,187)(8,186)(9,185)(10,184)(11,183)(12,182)(13,181)(14,180)(15,179)(16,178)(17,177)(18,176)(19,175)(20,174)(21,173)(22,172)(23,171)(24,170)(25,169)(26,168)(27,167)(28,166)(29,165)(30,164)(31,163)(32,162)(33,161)(34,160)(35,159)(36,158)(37,157)(38,156)(39,155)(40,154)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,140)(55,139)(56,138)(57,137)(58,136)(59,135)(60,134)(61,133)(62,132)(63,131)(64,130)(65,129)(66,128)(67,127)(68,126)(69,125)(70,124)(71,123)(72,122)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193), (1,193)(2,192)(3,191)(4,190)(5,189)(6,188)(7,187)(8,186)(9,185)(10,184)(11,183)(12,182)(13,181)(14,180)(15,179)(16,178)(17,177)(18,176)(19,175)(20,174)(21,173)(22,172)(23,171)(24,170)(25,169)(26,168)(27,167)(28,166)(29,165)(30,164)(31,163)(32,162)(33,161)(34,160)(35,159)(36,158)(37,157)(38,156)(39,155)(40,154)(41,153)(42,152)(43,151)(44,150)(45,149)(46,148)(47,147)(48,146)(49,145)(50,144)(51,143)(52,142)(53,141)(54,140)(55,139)(56,138)(57,137)(58,136)(59,135)(60,134)(61,133)(62,132)(63,131)(64,130)(65,129)(66,128)(67,127)(68,126)(69,125)(70,124)(71,123)(72,122)(73,121)(74,120)(75,119)(76,118)(77,117)(78,116)(79,115)(80,114)(81,113)(82,112)(83,111)(84,110)(85,109)(86,108)(87,107)(88,106)(89,105)(90,104)(91,103)(92,102)(93,101)(94,100)(95,99)(96,98) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193)], [(1,193),(2,192),(3,191),(4,190),(5,189),(6,188),(7,187),(8,186),(9,185),(10,184),(11,183),(12,182),(13,181),(14,180),(15,179),(16,178),(17,177),(18,176),(19,175),(20,174),(21,173),(22,172),(23,171),(24,170),(25,169),(26,168),(27,167),(28,166),(29,165),(30,164),(31,163),(32,162),(33,161),(34,160),(35,159),(36,158),(37,157),(38,156),(39,155),(40,154),(41,153),(42,152),(43,151),(44,150),(45,149),(46,148),(47,147),(48,146),(49,145),(50,144),(51,143),(52,142),(53,141),(54,140),(55,139),(56,138),(57,137),(58,136),(59,135),(60,134),(61,133),(62,132),(63,131),(64,130),(65,129),(66,128),(67,127),(68,126),(69,125),(70,124),(71,123),(72,122),(73,121),(74,120),(75,119),(76,118),(77,117),(78,116),(79,115),(80,114),(81,113),(82,112),(83,111),(84,110),(85,109),(86,108),(87,107),(88,106),(89,105),(90,104),(91,103),(92,102),(93,101),(94,100),(95,99),(96,98)]])
98 conjugacy classes
class | 1 | 2 | 193A | ··· | 193CR |
order | 1 | 2 | 193 | ··· | 193 |
size | 1 | 193 | 2 | ··· | 2 |
98 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D193 |
kernel | D193 | C193 | C1 |
# reps | 1 | 1 | 96 |
Matrix representation of D193 ►in GL2(𝔽773) generated by
524 | 772 |
1 | 0 |
524 | 772 |
160 | 249 |
G:=sub<GL(2,GF(773))| [524,1,772,0],[524,160,772,249] >;
D193 in GAP, Magma, Sage, TeX
D_{193}
% in TeX
G:=Group("D193");
// GroupNames label
G:=SmallGroup(386,1);
// by ID
G=gap.SmallGroup(386,1);
# by ID
G:=PCGroup([2,-2,-193,1537]);
// Polycyclic
G:=Group<a,b|a^193=b^2=1,b*a*b=a^-1>;
// generators/relations
Export