metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D197, C197⋊C2, sometimes denoted D394 or Dih197 or Dih394, SmallGroup(394,1)
Series: Derived ►Chief ►Lower central ►Upper central
C197 — D197 |
Generators and relations for D197
G = < a,b | a197=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197)
(1 197)(2 196)(3 195)(4 194)(5 193)(6 192)(7 191)(8 190)(9 189)(10 188)(11 187)(12 186)(13 185)(14 184)(15 183)(16 182)(17 181)(18 180)(19 179)(20 178)(21 177)(22 176)(23 175)(24 174)(25 173)(26 172)(27 171)(28 170)(29 169)(30 168)(31 167)(32 166)(33 165)(34 164)(35 163)(36 162)(37 161)(38 160)(39 159)(40 158)(41 157)(42 156)(43 155)(44 154)(45 153)(46 152)(47 151)(48 150)(49 149)(50 148)(51 147)(52 146)(53 145)(54 144)(55 143)(56 142)(57 141)(58 140)(59 139)(60 138)(61 137)(62 136)(63 135)(64 134)(65 133)(66 132)(67 131)(68 130)(69 129)(70 128)(71 127)(72 126)(73 125)(74 124)(75 123)(76 122)(77 121)(78 120)(79 119)(80 118)(81 117)(82 116)(83 115)(84 114)(85 113)(86 112)(87 111)(88 110)(89 109)(90 108)(91 107)(92 106)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)
G:=sub<Sym(197)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197), (1,197)(2,196)(3,195)(4,194)(5,193)(6,192)(7,191)(8,190)(9,189)(10,188)(11,187)(12,186)(13,185)(14,184)(15,183)(16,182)(17,181)(18,180)(19,179)(20,178)(21,177)(22,176)(23,175)(24,174)(25,173)(26,172)(27,171)(28,170)(29,169)(30,168)(31,167)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,140)(59,139)(60,138)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,130)(69,129)(70,128)(71,127)(72,126)(73,125)(74,124)(75,123)(76,122)(77,121)(78,120)(79,119)(80,118)(81,117)(82,116)(83,115)(84,114)(85,113)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197), (1,197)(2,196)(3,195)(4,194)(5,193)(6,192)(7,191)(8,190)(9,189)(10,188)(11,187)(12,186)(13,185)(14,184)(15,183)(16,182)(17,181)(18,180)(19,179)(20,178)(21,177)(22,176)(23,175)(24,174)(25,173)(26,172)(27,171)(28,170)(29,169)(30,168)(31,167)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,155)(44,154)(45,153)(46,152)(47,151)(48,150)(49,149)(50,148)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,140)(59,139)(60,138)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,130)(69,129)(70,128)(71,127)(72,126)(73,125)(74,124)(75,123)(76,122)(77,121)(78,120)(79,119)(80,118)(81,117)(82,116)(83,115)(84,114)(85,113)(86,112)(87,111)(88,110)(89,109)(90,108)(91,107)(92,106)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197)], [(1,197),(2,196),(3,195),(4,194),(5,193),(6,192),(7,191),(8,190),(9,189),(10,188),(11,187),(12,186),(13,185),(14,184),(15,183),(16,182),(17,181),(18,180),(19,179),(20,178),(21,177),(22,176),(23,175),(24,174),(25,173),(26,172),(27,171),(28,170),(29,169),(30,168),(31,167),(32,166),(33,165),(34,164),(35,163),(36,162),(37,161),(38,160),(39,159),(40,158),(41,157),(42,156),(43,155),(44,154),(45,153),(46,152),(47,151),(48,150),(49,149),(50,148),(51,147),(52,146),(53,145),(54,144),(55,143),(56,142),(57,141),(58,140),(59,139),(60,138),(61,137),(62,136),(63,135),(64,134),(65,133),(66,132),(67,131),(68,130),(69,129),(70,128),(71,127),(72,126),(73,125),(74,124),(75,123),(76,122),(77,121),(78,120),(79,119),(80,118),(81,117),(82,116),(83,115),(84,114),(85,113),(86,112),(87,111),(88,110),(89,109),(90,108),(91,107),(92,106),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100)]])
100 conjugacy classes
class | 1 | 2 | 197A | ··· | 197CT |
order | 1 | 2 | 197 | ··· | 197 |
size | 1 | 197 | 2 | ··· | 2 |
100 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D197 |
kernel | D197 | C197 | C1 |
# reps | 1 | 1 | 98 |
Matrix representation of D197 ►in GL2(𝔽3547) generated by
1259 | 3546 |
1 | 0 |
1259 | 3546 |
3118 | 2288 |
G:=sub<GL(2,GF(3547))| [1259,1,3546,0],[1259,3118,3546,2288] >;
D197 in GAP, Magma, Sage, TeX
D_{197}
% in TeX
G:=Group("D197");
// GroupNames label
G:=SmallGroup(394,1);
// by ID
G=gap.SmallGroup(394,1);
# by ID
G:=PCGroup([2,-2,-197,1569]);
// Polycyclic
G:=Group<a,b|a^197=b^2=1,b*a*b=a^-1>;
// generators/relations
Export