metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D199, C199⋊C2, sometimes denoted D398 or Dih199 or Dih398, SmallGroup(398,1)
Series: Derived ►Chief ►Lower central ►Upper central
C199 — D199 |
Generators and relations for D199
G = < a,b | a199=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199)
(1 199)(2 198)(3 197)(4 196)(5 195)(6 194)(7 193)(8 192)(9 191)(10 190)(11 189)(12 188)(13 187)(14 186)(15 185)(16 184)(17 183)(18 182)(19 181)(20 180)(21 179)(22 178)(23 177)(24 176)(25 175)(26 174)(27 173)(28 172)(29 171)(30 170)(31 169)(32 168)(33 167)(34 166)(35 165)(36 164)(37 163)(38 162)(39 161)(40 160)(41 159)(42 158)(43 157)(44 156)(45 155)(46 154)(47 153)(48 152)(49 151)(50 150)(51 149)(52 148)(53 147)(54 146)(55 145)(56 144)(57 143)(58 142)(59 141)(60 140)(61 139)(62 138)(63 137)(64 136)(65 135)(66 134)(67 133)(68 132)(69 131)(70 130)(71 129)(72 128)(73 127)(74 126)(75 125)(76 124)(77 123)(78 122)(79 121)(80 120)(81 119)(82 118)(83 117)(84 116)(85 115)(86 114)(87 113)(88 112)(89 111)(90 110)(91 109)(92 108)(93 107)(94 106)(95 105)(96 104)(97 103)(98 102)(99 101)
G:=sub<Sym(199)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199), (1,199)(2,198)(3,197)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,185)(16,184)(17,183)(18,182)(19,181)(20,180)(21,179)(22,178)(23,177)(24,176)(25,175)(26,174)(27,173)(28,172)(29,171)(30,170)(31,169)(32,168)(33,167)(34,166)(35,165)(36,164)(37,163)(38,162)(39,161)(40,160)(41,159)(42,158)(43,157)(44,156)(45,155)(46,154)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,147)(54,146)(55,145)(56,144)(57,143)(58,142)(59,141)(60,140)(61,139)(62,138)(63,137)(64,136)(65,135)(66,134)(67,133)(68,132)(69,131)(70,130)(71,129)(72,128)(73,127)(74,126)(75,125)(76,124)(77,123)(78,122)(79,121)(80,120)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199), (1,199)(2,198)(3,197)(4,196)(5,195)(6,194)(7,193)(8,192)(9,191)(10,190)(11,189)(12,188)(13,187)(14,186)(15,185)(16,184)(17,183)(18,182)(19,181)(20,180)(21,179)(22,178)(23,177)(24,176)(25,175)(26,174)(27,173)(28,172)(29,171)(30,170)(31,169)(32,168)(33,167)(34,166)(35,165)(36,164)(37,163)(38,162)(39,161)(40,160)(41,159)(42,158)(43,157)(44,156)(45,155)(46,154)(47,153)(48,152)(49,151)(50,150)(51,149)(52,148)(53,147)(54,146)(55,145)(56,144)(57,143)(58,142)(59,141)(60,140)(61,139)(62,138)(63,137)(64,136)(65,135)(66,134)(67,133)(68,132)(69,131)(70,130)(71,129)(72,128)(73,127)(74,126)(75,125)(76,124)(77,123)(78,122)(79,121)(80,120)(81,119)(82,118)(83,117)(84,116)(85,115)(86,114)(87,113)(88,112)(89,111)(90,110)(91,109)(92,108)(93,107)(94,106)(95,105)(96,104)(97,103)(98,102)(99,101) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199)], [(1,199),(2,198),(3,197),(4,196),(5,195),(6,194),(7,193),(8,192),(9,191),(10,190),(11,189),(12,188),(13,187),(14,186),(15,185),(16,184),(17,183),(18,182),(19,181),(20,180),(21,179),(22,178),(23,177),(24,176),(25,175),(26,174),(27,173),(28,172),(29,171),(30,170),(31,169),(32,168),(33,167),(34,166),(35,165),(36,164),(37,163),(38,162),(39,161),(40,160),(41,159),(42,158),(43,157),(44,156),(45,155),(46,154),(47,153),(48,152),(49,151),(50,150),(51,149),(52,148),(53,147),(54,146),(55,145),(56,144),(57,143),(58,142),(59,141),(60,140),(61,139),(62,138),(63,137),(64,136),(65,135),(66,134),(67,133),(68,132),(69,131),(70,130),(71,129),(72,128),(73,127),(74,126),(75,125),(76,124),(77,123),(78,122),(79,121),(80,120),(81,119),(82,118),(83,117),(84,116),(85,115),(86,114),(87,113),(88,112),(89,111),(90,110),(91,109),(92,108),(93,107),(94,106),(95,105),(96,104),(97,103),(98,102),(99,101)]])
101 conjugacy classes
class | 1 | 2 | 199A | ··· | 199CU |
order | 1 | 2 | 199 | ··· | 199 |
size | 1 | 199 | 2 | ··· | 2 |
101 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D199 |
kernel | D199 | C199 | C1 |
# reps | 1 | 1 | 99 |
Matrix representation of D199 ►in GL2(𝔽797) generated by
200 | 796 |
500 | 663 |
37 | 444 |
40 | 760 |
G:=sub<GL(2,GF(797))| [200,500,796,663],[37,40,444,760] >;
D199 in GAP, Magma, Sage, TeX
D_{199}
% in TeX
G:=Group("D199");
// GroupNames label
G:=SmallGroup(398,1);
// by ID
G=gap.SmallGroup(398,1);
# by ID
G:=PCGroup([2,-2,-199,1585]);
// Polycyclic
G:=Group<a,b|a^199=b^2=1,b*a*b=a^-1>;
// generators/relations
Export