Extensions 1→N→G→Q→1 with N=C3×C66 and Q=C2

Direct product G=N×Q with N=C3×C66 and Q=C2
dρLabelID
C6×C66396C6xC66396,30

Semidirect products G=N:Q with N=C3×C66 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C66)⋊1C2 = C2×C3⋊D33φ: C2/C1C2 ⊆ Aut C3×C66198(C3xC66):1C2396,29
(C3×C66)⋊2C2 = C6×D33φ: C2/C1C2 ⊆ Aut C3×C661322(C3xC66):2C2396,27
(C3×C66)⋊3C2 = C3×C6×D11φ: C2/C1C2 ⊆ Aut C3×C66198(C3xC66):3C2396,25
(C3×C66)⋊4C2 = S3×C66φ: C2/C1C2 ⊆ Aut C3×C661322(C3xC66):4C2396,26
(C3×C66)⋊5C2 = C3⋊S3×C22φ: C2/C1C2 ⊆ Aut C3×C66198(C3xC66):5C2396,28

Non-split extensions G=N.Q with N=C3×C66 and Q=C2
extensionφ:Q→Aut NdρLabelID
(C3×C66).1C2 = C3⋊Dic33φ: C2/C1C2 ⊆ Aut C3×C66396(C3xC66).1C2396,15
(C3×C66).2C2 = C3×Dic33φ: C2/C1C2 ⊆ Aut C3×C661322(C3xC66).2C2396,13
(C3×C66).3C2 = C32×Dic11φ: C2/C1C2 ⊆ Aut C3×C66396(C3xC66).3C2396,11
(C3×C66).4C2 = Dic3×C33φ: C2/C1C2 ⊆ Aut C3×C661322(C3xC66).4C2396,12
(C3×C66).5C2 = C11×C3⋊Dic3φ: C2/C1C2 ⊆ Aut C3×C66396(C3xC66).5C2396,14

׿
×
𝔽