direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C6×D33, C66⋊1C6, C66⋊2S3, C33⋊7D6, C32⋊5D22, C22⋊(C3×S3), C6⋊(C3×D11), C11⋊2(S3×C6), C33⋊2(C2×C6), (C3×C66)⋊2C2, C3⋊2(C6×D11), (C3×C6)⋊1D11, (C3×C33)⋊7C22, SmallGroup(396,27)
Series: Derived ►Chief ►Lower central ►Upper central
C33 — C6×D33 |
Generators and relations for C6×D33
G = < a,b,c | a6=b33=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 35 12 46 23 57)(2 36 13 47 24 58)(3 37 14 48 25 59)(4 38 15 49 26 60)(5 39 16 50 27 61)(6 40 17 51 28 62)(7 41 18 52 29 63)(8 42 19 53 30 64)(9 43 20 54 31 65)(10 44 21 55 32 66)(11 45 22 56 33 34)(67 107 89 129 78 118)(68 108 90 130 79 119)(69 109 91 131 80 120)(70 110 92 132 81 121)(71 111 93 100 82 122)(72 112 94 101 83 123)(73 113 95 102 84 124)(74 114 96 103 85 125)(75 115 97 104 86 126)(76 116 98 105 87 127)(77 117 99 106 88 128)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)
(1 111)(2 110)(3 109)(4 108)(5 107)(6 106)(7 105)(8 104)(9 103)(10 102)(11 101)(12 100)(13 132)(14 131)(15 130)(16 129)(17 128)(18 127)(19 126)(20 125)(21 124)(22 123)(23 122)(24 121)(25 120)(26 119)(27 118)(28 117)(29 116)(30 115)(31 114)(32 113)(33 112)(34 94)(35 93)(36 92)(37 91)(38 90)(39 89)(40 88)(41 87)(42 86)(43 85)(44 84)(45 83)(46 82)(47 81)(48 80)(49 79)(50 78)(51 77)(52 76)(53 75)(54 74)(55 73)(56 72)(57 71)(58 70)(59 69)(60 68)(61 67)(62 99)(63 98)(64 97)(65 96)(66 95)
G:=sub<Sym(132)| (1,35,12,46,23,57)(2,36,13,47,24,58)(3,37,14,48,25,59)(4,38,15,49,26,60)(5,39,16,50,27,61)(6,40,17,51,28,62)(7,41,18,52,29,63)(8,42,19,53,30,64)(9,43,20,54,31,65)(10,44,21,55,32,66)(11,45,22,56,33,34)(67,107,89,129,78,118)(68,108,90,130,79,119)(69,109,91,131,80,120)(70,110,92,132,81,121)(71,111,93,100,82,122)(72,112,94,101,83,123)(73,113,95,102,84,124)(74,114,96,103,85,125)(75,115,97,104,86,126)(76,116,98,105,87,127)(77,117,99,106,88,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,111)(2,110)(3,109)(4,108)(5,107)(6,106)(7,105)(8,104)(9,103)(10,102)(11,101)(12,100)(13,132)(14,131)(15,130)(16,129)(17,128)(18,127)(19,126)(20,125)(21,124)(22,123)(23,122)(24,121)(25,120)(26,119)(27,118)(28,117)(29,116)(30,115)(31,114)(32,113)(33,112)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,99)(63,98)(64,97)(65,96)(66,95)>;
G:=Group( (1,35,12,46,23,57)(2,36,13,47,24,58)(3,37,14,48,25,59)(4,38,15,49,26,60)(5,39,16,50,27,61)(6,40,17,51,28,62)(7,41,18,52,29,63)(8,42,19,53,30,64)(9,43,20,54,31,65)(10,44,21,55,32,66)(11,45,22,56,33,34)(67,107,89,129,78,118)(68,108,90,130,79,119)(69,109,91,131,80,120)(70,110,92,132,81,121)(71,111,93,100,82,122)(72,112,94,101,83,123)(73,113,95,102,84,124)(74,114,96,103,85,125)(75,115,97,104,86,126)(76,116,98,105,87,127)(77,117,99,106,88,128), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132), (1,111)(2,110)(3,109)(4,108)(5,107)(6,106)(7,105)(8,104)(9,103)(10,102)(11,101)(12,100)(13,132)(14,131)(15,130)(16,129)(17,128)(18,127)(19,126)(20,125)(21,124)(22,123)(23,122)(24,121)(25,120)(26,119)(27,118)(28,117)(29,116)(30,115)(31,114)(32,113)(33,112)(34,94)(35,93)(36,92)(37,91)(38,90)(39,89)(40,88)(41,87)(42,86)(43,85)(44,84)(45,83)(46,82)(47,81)(48,80)(49,79)(50,78)(51,77)(52,76)(53,75)(54,74)(55,73)(56,72)(57,71)(58,70)(59,69)(60,68)(61,67)(62,99)(63,98)(64,97)(65,96)(66,95) );
G=PermutationGroup([[(1,35,12,46,23,57),(2,36,13,47,24,58),(3,37,14,48,25,59),(4,38,15,49,26,60),(5,39,16,50,27,61),(6,40,17,51,28,62),(7,41,18,52,29,63),(8,42,19,53,30,64),(9,43,20,54,31,65),(10,44,21,55,32,66),(11,45,22,56,33,34),(67,107,89,129,78,118),(68,108,90,130,79,119),(69,109,91,131,80,120),(70,110,92,132,81,121),(71,111,93,100,82,122),(72,112,94,101,83,123),(73,113,95,102,84,124),(74,114,96,103,85,125),(75,115,97,104,86,126),(76,116,98,105,87,127),(77,117,99,106,88,128)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)], [(1,111),(2,110),(3,109),(4,108),(5,107),(6,106),(7,105),(8,104),(9,103),(10,102),(11,101),(12,100),(13,132),(14,131),(15,130),(16,129),(17,128),(18,127),(19,126),(20,125),(21,124),(22,123),(23,122),(24,121),(25,120),(26,119),(27,118),(28,117),(29,116),(30,115),(31,114),(32,113),(33,112),(34,94),(35,93),(36,92),(37,91),(38,90),(39,89),(40,88),(41,87),(42,86),(43,85),(44,84),(45,83),(46,82),(47,81),(48,80),(49,79),(50,78),(51,77),(52,76),(53,75),(54,74),(55,73),(56,72),(57,71),(58,70),(59,69),(60,68),(61,67),(62,99),(63,98),(64,97),(65,96),(66,95)]])
108 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 11A | ··· | 11E | 22A | ··· | 22E | 33A | ··· | 33AN | 66A | ··· | 66AN |
order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 33 | ··· | 33 | 66 | ··· | 66 |
size | 1 | 1 | 33 | 33 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 33 | 33 | 33 | 33 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
108 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | S3 | D6 | C3×S3 | D11 | S3×C6 | D22 | C3×D11 | D33 | C6×D11 | D66 | C3×D33 | C6×D33 |
kernel | C6×D33 | C3×D33 | C3×C66 | D66 | D33 | C66 | C66 | C33 | C22 | C3×C6 | C11 | C32 | C6 | C6 | C3 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 5 | 2 | 5 | 10 | 10 | 10 | 10 | 20 | 20 |
Matrix representation of C6×D33 ►in GL2(𝔽67) generated by
30 | 0 |
0 | 30 |
17 | 0 |
0 | 4 |
0 | 63 |
50 | 0 |
G:=sub<GL(2,GF(67))| [30,0,0,30],[17,0,0,4],[0,50,63,0] >;
C6×D33 in GAP, Magma, Sage, TeX
C_6\times D_{33}
% in TeX
G:=Group("C6xD33");
// GroupNames label
G:=SmallGroup(396,27);
// by ID
G=gap.SmallGroup(396,27);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-11,483,9004]);
// Polycyclic
G:=Group<a,b,c|a^6=b^33=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export