direct product, metabelian, supersoluble, monomial, A-group
Aliases: C2×C3⋊D33, C6⋊D33, C66⋊1S3, C3⋊2D66, C33⋊6D6, C32⋊6D22, C22⋊(C3⋊S3), (C3×C66)⋊1C2, (C3×C6)⋊2D11, (C3×C33)⋊6C22, C11⋊2(C2×C3⋊S3), SmallGroup(396,29)
Series: Derived ►Chief ►Lower central ►Upper central
| C1 — C11 — C33 — C3×C33 — C3⋊D33 — C2×C3⋊D33 | 
| C3×C33 — C2×C3⋊D33 | 
Generators and relations for C2×C3⋊D33
 G = < a,b,c,d | a2=b3=c33=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Subgroups: 816 in 60 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C3, C22, S3, C6, C32, C11, D6, C3⋊S3, C3×C6, D11, C22, C33, C2×C3⋊S3, D22, D33, C66, C3×C33, D66, C3⋊D33, C3×C66, C2×C3⋊D33
Quotients: C1, C2, C22, S3, D6, C3⋊S3, D11, C2×C3⋊S3, D22, D33, D66, C3⋊D33, C2×C3⋊D33
(1 129)(2 130)(3 131)(4 132)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 115)(21 116)(22 117)(23 118)(24 119)(25 120)(26 121)(27 122)(28 123)(29 124)(30 125)(31 126)(32 127)(33 128)(34 160)(35 161)(36 162)(37 163)(38 164)(39 165)(40 133)(41 134)(42 135)(43 136)(44 137)(45 138)(46 139)(47 140)(48 141)(49 142)(50 143)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 150)(58 151)(59 152)(60 153)(61 154)(62 155)(63 156)(64 157)(65 158)(66 159)(67 184)(68 185)(69 186)(70 187)(71 188)(72 189)(73 190)(74 191)(75 192)(76 193)(77 194)(78 195)(79 196)(80 197)(81 198)(82 166)(83 167)(84 168)(85 169)(86 170)(87 171)(88 172)(89 173)(90 174)(91 175)(92 176)(93 177)(94 178)(95 179)(96 180)(97 181)(98 182)(99 183)
(1 71 37)(2 72 38)(3 73 39)(4 74 40)(5 75 41)(6 76 42)(7 77 43)(8 78 44)(9 79 45)(10 80 46)(11 81 47)(12 82 48)(13 83 49)(14 84 50)(15 85 51)(16 86 52)(17 87 53)(18 88 54)(19 89 55)(20 90 56)(21 91 57)(22 92 58)(23 93 59)(24 94 60)(25 95 61)(26 96 62)(27 97 63)(28 98 64)(29 99 65)(30 67 66)(31 68 34)(32 69 35)(33 70 36)(100 192 134)(101 193 135)(102 194 136)(103 195 137)(104 196 138)(105 197 139)(106 198 140)(107 166 141)(108 167 142)(109 168 143)(110 169 144)(111 170 145)(112 171 146)(113 172 147)(114 173 148)(115 174 149)(116 175 150)(117 176 151)(118 177 152)(119 178 153)(120 179 154)(121 180 155)(122 181 156)(123 182 157)(124 183 158)(125 184 159)(126 185 160)(127 186 161)(128 187 162)(129 188 163)(130 189 164)(131 190 165)(132 191 133)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33)(34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66)(67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165)(166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198)
(1 33)(2 32)(3 31)(4 30)(5 29)(6 28)(7 27)(8 26)(9 25)(10 24)(11 23)(12 22)(13 21)(14 20)(15 19)(16 18)(34 73)(35 72)(36 71)(37 70)(38 69)(39 68)(40 67)(41 99)(42 98)(43 97)(44 96)(45 95)(46 94)(47 93)(48 92)(49 91)(50 90)(51 89)(52 88)(53 87)(54 86)(55 85)(56 84)(57 83)(58 82)(59 81)(60 80)(61 79)(62 78)(63 77)(64 76)(65 75)(66 74)(100 124)(101 123)(102 122)(103 121)(104 120)(105 119)(106 118)(107 117)(108 116)(109 115)(110 114)(111 113)(125 132)(126 131)(127 130)(128 129)(133 184)(134 183)(135 182)(136 181)(137 180)(138 179)(139 178)(140 177)(141 176)(142 175)(143 174)(144 173)(145 172)(146 171)(147 170)(148 169)(149 168)(150 167)(151 166)(152 198)(153 197)(154 196)(155 195)(156 194)(157 193)(158 192)(159 191)(160 190)(161 189)(162 188)(163 187)(164 186)(165 185)
G:=sub<Sym(198)| (1,129)(2,130)(3,131)(4,132)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,184)(68,185)(69,186)(70,187)(71,188)(72,189)(73,190)(74,191)(75,192)(76,193)(77,194)(78,195)(79,196)(80,197)(81,198)(82,166)(83,167)(84,168)(85,169)(86,170)(87,171)(88,172)(89,173)(90,174)(91,175)(92,176)(93,177)(94,178)(95,179)(96,180)(97,181)(98,182)(99,183), (1,71,37)(2,72,38)(3,73,39)(4,74,40)(5,75,41)(6,76,42)(7,77,43)(8,78,44)(9,79,45)(10,80,46)(11,81,47)(12,82,48)(13,83,49)(14,84,50)(15,85,51)(16,86,52)(17,87,53)(18,88,54)(19,89,55)(20,90,56)(21,91,57)(22,92,58)(23,93,59)(24,94,60)(25,95,61)(26,96,62)(27,97,63)(28,98,64)(29,99,65)(30,67,66)(31,68,34)(32,69,35)(33,70,36)(100,192,134)(101,193,135)(102,194,136)(103,195,137)(104,196,138)(105,197,139)(106,198,140)(107,166,141)(108,167,142)(109,168,143)(110,169,144)(111,170,145)(112,171,146)(113,172,147)(114,173,148)(115,174,149)(116,175,150)(117,176,151)(118,177,152)(119,178,153)(120,179,154)(121,180,155)(122,181,156)(123,182,157)(124,183,158)(125,184,159)(126,185,160)(127,186,161)(128,187,162)(129,188,163)(130,189,164)(131,190,165)(132,191,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68)(40,67)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(125,132)(126,131)(127,130)(128,129)(133,184)(134,183)(135,182)(136,181)(137,180)(138,179)(139,178)(140,177)(141,176)(142,175)(143,174)(144,173)(145,172)(146,171)(147,170)(148,169)(149,168)(150,167)(151,166)(152,198)(153,197)(154,196)(155,195)(156,194)(157,193)(158,192)(159,191)(160,190)(161,189)(162,188)(163,187)(164,186)(165,185)>;
G:=Group( (1,129)(2,130)(3,131)(4,132)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,160)(35,161)(36,162)(37,163)(38,164)(39,165)(40,133)(41,134)(42,135)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,184)(68,185)(69,186)(70,187)(71,188)(72,189)(73,190)(74,191)(75,192)(76,193)(77,194)(78,195)(79,196)(80,197)(81,198)(82,166)(83,167)(84,168)(85,169)(86,170)(87,171)(88,172)(89,173)(90,174)(91,175)(92,176)(93,177)(94,178)(95,179)(96,180)(97,181)(98,182)(99,183), (1,71,37)(2,72,38)(3,73,39)(4,74,40)(5,75,41)(6,76,42)(7,77,43)(8,78,44)(9,79,45)(10,80,46)(11,81,47)(12,82,48)(13,83,49)(14,84,50)(15,85,51)(16,86,52)(17,87,53)(18,88,54)(19,89,55)(20,90,56)(21,91,57)(22,92,58)(23,93,59)(24,94,60)(25,95,61)(26,96,62)(27,97,63)(28,98,64)(29,99,65)(30,67,66)(31,68,34)(32,69,35)(33,70,36)(100,192,134)(101,193,135)(102,194,136)(103,195,137)(104,196,138)(105,197,139)(106,198,140)(107,166,141)(108,167,142)(109,168,143)(110,169,144)(111,170,145)(112,171,146)(113,172,147)(114,173,148)(115,174,149)(116,175,150)(117,176,151)(118,177,152)(119,178,153)(120,179,154)(121,180,155)(122,181,156)(123,182,157)(124,183,158)(125,184,159)(126,185,160)(127,186,161)(128,187,162)(129,188,163)(130,189,164)(131,190,165)(132,191,133), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33)(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66)(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165)(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198), (1,33)(2,32)(3,31)(4,30)(5,29)(6,28)(7,27)(8,26)(9,25)(10,24)(11,23)(12,22)(13,21)(14,20)(15,19)(16,18)(34,73)(35,72)(36,71)(37,70)(38,69)(39,68)(40,67)(41,99)(42,98)(43,97)(44,96)(45,95)(46,94)(47,93)(48,92)(49,91)(50,90)(51,89)(52,88)(53,87)(54,86)(55,85)(56,84)(57,83)(58,82)(59,81)(60,80)(61,79)(62,78)(63,77)(64,76)(65,75)(66,74)(100,124)(101,123)(102,122)(103,121)(104,120)(105,119)(106,118)(107,117)(108,116)(109,115)(110,114)(111,113)(125,132)(126,131)(127,130)(128,129)(133,184)(134,183)(135,182)(136,181)(137,180)(138,179)(139,178)(140,177)(141,176)(142,175)(143,174)(144,173)(145,172)(146,171)(147,170)(148,169)(149,168)(150,167)(151,166)(152,198)(153,197)(154,196)(155,195)(156,194)(157,193)(158,192)(159,191)(160,190)(161,189)(162,188)(163,187)(164,186)(165,185) );
G=PermutationGroup([[(1,129),(2,130),(3,131),(4,132),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,115),(21,116),(22,117),(23,118),(24,119),(25,120),(26,121),(27,122),(28,123),(29,124),(30,125),(31,126),(32,127),(33,128),(34,160),(35,161),(36,162),(37,163),(38,164),(39,165),(40,133),(41,134),(42,135),(43,136),(44,137),(45,138),(46,139),(47,140),(48,141),(49,142),(50,143),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,150),(58,151),(59,152),(60,153),(61,154),(62,155),(63,156),(64,157),(65,158),(66,159),(67,184),(68,185),(69,186),(70,187),(71,188),(72,189),(73,190),(74,191),(75,192),(76,193),(77,194),(78,195),(79,196),(80,197),(81,198),(82,166),(83,167),(84,168),(85,169),(86,170),(87,171),(88,172),(89,173),(90,174),(91,175),(92,176),(93,177),(94,178),(95,179),(96,180),(97,181),(98,182),(99,183)], [(1,71,37),(2,72,38),(3,73,39),(4,74,40),(5,75,41),(6,76,42),(7,77,43),(8,78,44),(9,79,45),(10,80,46),(11,81,47),(12,82,48),(13,83,49),(14,84,50),(15,85,51),(16,86,52),(17,87,53),(18,88,54),(19,89,55),(20,90,56),(21,91,57),(22,92,58),(23,93,59),(24,94,60),(25,95,61),(26,96,62),(27,97,63),(28,98,64),(29,99,65),(30,67,66),(31,68,34),(32,69,35),(33,70,36),(100,192,134),(101,193,135),(102,194,136),(103,195,137),(104,196,138),(105,197,139),(106,198,140),(107,166,141),(108,167,142),(109,168,143),(110,169,144),(111,170,145),(112,171,146),(113,172,147),(114,173,148),(115,174,149),(116,175,150),(117,176,151),(118,177,152),(119,178,153),(120,179,154),(121,180,155),(122,181,156),(123,182,157),(124,183,158),(125,184,159),(126,185,160),(127,186,161),(128,187,162),(129,188,163),(130,189,164),(131,190,165),(132,191,133)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33),(34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66),(67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165),(166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198)], [(1,33),(2,32),(3,31),(4,30),(5,29),(6,28),(7,27),(8,26),(9,25),(10,24),(11,23),(12,22),(13,21),(14,20),(15,19),(16,18),(34,73),(35,72),(36,71),(37,70),(38,69),(39,68),(40,67),(41,99),(42,98),(43,97),(44,96),(45,95),(46,94),(47,93),(48,92),(49,91),(50,90),(51,89),(52,88),(53,87),(54,86),(55,85),(56,84),(57,83),(58,82),(59,81),(60,80),(61,79),(62,78),(63,77),(64,76),(65,75),(66,74),(100,124),(101,123),(102,122),(103,121),(104,120),(105,119),(106,118),(107,117),(108,116),(109,115),(110,114),(111,113),(125,132),(126,131),(127,130),(128,129),(133,184),(134,183),(135,182),(136,181),(137,180),(138,179),(139,178),(140,177),(141,176),(142,175),(143,174),(144,173),(145,172),(146,171),(147,170),(148,169),(149,168),(150,167),(151,166),(152,198),(153,197),(154,196),(155,195),(156,194),(157,193),(158,192),(159,191),(160,190),(161,189),(162,188),(163,187),(164,186),(165,185)]])
102 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | 3B | 3C | 3D | 6A | 6B | 6C | 6D | 11A | ··· | 11E | 22A | ··· | 22E | 33A | ··· | 33AN | 66A | ··· | 66AN | 
| order | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 11 | ··· | 11 | 22 | ··· | 22 | 33 | ··· | 33 | 66 | ··· | 66 | 
| size | 1 | 1 | 99 | 99 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 
102 irreducible representations
| dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 
| type | + | + | + | + | + | + | + | + | + | 
| image | C1 | C2 | C2 | S3 | D6 | D11 | D22 | D33 | D66 | 
| kernel | C2×C3⋊D33 | C3⋊D33 | C3×C66 | C66 | C33 | C3×C6 | C32 | C6 | C3 | 
| # reps | 1 | 2 | 1 | 4 | 4 | 5 | 5 | 40 | 40 | 
Matrix representation of C2×C3⋊D33 ►in GL4(𝔽67) generated by
| 1 | 0 | 0 | 0 | 
| 0 | 1 | 0 | 0 | 
| 0 | 0 | 66 | 0 | 
| 0 | 0 | 0 | 66 | 
| 42 | 24 | 0 | 0 | 
| 28 | 24 | 0 | 0 | 
| 0 | 0 | 49 | 21 | 
| 0 | 0 | 46 | 17 | 
| 12 | 23 | 0 | 0 | 
| 38 | 45 | 0 | 0 | 
| 0 | 0 | 7 | 26 | 
| 0 | 0 | 41 | 28 | 
| 55 | 2 | 0 | 0 | 
| 29 | 12 | 0 | 0 | 
| 0 | 0 | 7 | 26 | 
| 0 | 0 | 60 | 60 | 
G:=sub<GL(4,GF(67))| [1,0,0,0,0,1,0,0,0,0,66,0,0,0,0,66],[42,28,0,0,24,24,0,0,0,0,49,46,0,0,21,17],[12,38,0,0,23,45,0,0,0,0,7,41,0,0,26,28],[55,29,0,0,2,12,0,0,0,0,7,60,0,0,26,60] >;
C2×C3⋊D33 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes D_{33} % in TeX
G:=Group("C2xC3:D33"); // GroupNames label
G:=SmallGroup(396,29);
// by ID
G=gap.SmallGroup(396,29);
# by ID
G:=PCGroup([5,-2,-2,-3,-3,-11,122,483,9004]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^33=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations