Extensions 1→N→G→Q→1 with N=D7×C14 and Q=C2

Direct product G=N×Q with N=D7×C14 and Q=C2
dρLabelID
D7×C2×C1456D7xC2xC14392,42

Semidirect products G=N:Q with N=D7×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C14)⋊1C2 = C722D4φ: C2/C1C2 ⊆ Out D7×C14564-(D7xC14):1C2392,20
(D7×C14)⋊2C2 = C7⋊D28φ: C2/C1C2 ⊆ Out D7×C14284+(D7xC14):2C2392,21
(D7×C14)⋊3C2 = C7×D28φ: C2/C1C2 ⊆ Out D7×C14562(D7xC14):3C2392,25
(D7×C14)⋊4C2 = C7×C7⋊D4φ: C2/C1C2 ⊆ Out D7×C14282(D7xC14):4C2392,27
(D7×C14)⋊5C2 = C2×D72φ: C2/C1C2 ⊆ Out D7×C14284+(D7xC14):5C2392,41

Non-split extensions G=N.Q with N=D7×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(D7×C14).C2 = D7×Dic7φ: C2/C1C2 ⊆ Out D7×C14564-(D7xC14).C2392,18
(D7×C14).2C2 = D7×C28φ: trivial image562(D7xC14).2C2392,24

׿
×
𝔽