Copied to
clipboard

G = C7⋊D28order 392 = 23·72

The semidirect product of C7 and D28 acting via D28/D14=C2

metabelian, supersoluble, monomial

Aliases: C72D28, Dic7⋊D7, C723D4, D142D7, C14.4D14, C2.4D72, (D7×C14)⋊2C2, C71(C7⋊D4), (C7×Dic7)⋊1C2, (C7×C14).4C22, (C2×C7⋊D7)⋊1C2, SmallGroup(392,21)

Series: Derived Chief Lower central Upper central

C1C7×C14 — C7⋊D28
C1C7C72C7×C14D7×C14 — C7⋊D28
C72C7×C14 — C7⋊D28
C1C2

Generators and relations for C7⋊D28
 G = < a,b,c | a7=b28=c2=1, bab-1=cac=a-1, cbc=b-1 >

14C2
98C2
2C7
2C7
2C7
7C22
7C4
49C22
2D7
2C14
2C14
2C14
14D7
14D7
14C14
14D7
14D7
14D7
14D7
14D7
14D7
49D4
7C28
7C2×C14
7D14
7D14
14D14
14D14
14D14
2C7⋊D7
2C7×D7
7C7⋊D4
7D28

Permutation representations of C7⋊D28
On 28 points - transitive group 28T50
Generators in S28
(1 13 25 9 21 5 17)(2 18 6 22 10 26 14)(3 15 27 11 23 7 19)(4 20 8 24 12 28 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)

G:=sub<Sym(28)| (1,13,25,9,21,5,17)(2,18,6,22,10,26,14)(3,15,27,11,23,7,19)(4,20,8,24,12,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)>;

G:=Group( (1,13,25,9,21,5,17)(2,18,6,22,10,26,14)(3,15,27,11,23,7,19)(4,20,8,24,12,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19) );

G=PermutationGroup([[(1,13,25,9,21,5,17),(2,18,6,22,10,26,14),(3,15,27,11,23,7,19),(4,20,8,24,12,28,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19)]])

G:=TransitiveGroup(28,50);

47 conjugacy classes

class 1 2A2B2C 4 7A···7F7G···7O14A···14F14G···14O14P···14U28A···28F
order122247···77···714···1414···1414···1428···28
size111498142···24···42···24···414···1414···14

47 irreducible representations

dim111122222244
type+++++++++++
imageC1C2C2C2D4D7D7D14D28C7⋊D4D72C7⋊D28
kernelC7⋊D28C7×Dic7D7×C14C2×C7⋊D7C72Dic7D14C14C7C7C2C1
# reps111113366699

Matrix representation of C7⋊D28 in GL6(𝔽29)

100000
010000
00211800
00192600
000010
000001
,
2110000
2010000
00261100
0023300
00002827
000011
,
0190000
2600000
00261100
0023300
0000280
000011

G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,21,19,0,0,0,0,18,26,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[21,20,0,0,0,0,1,1,0,0,0,0,0,0,26,23,0,0,0,0,11,3,0,0,0,0,0,0,28,1,0,0,0,0,27,1],[0,26,0,0,0,0,19,0,0,0,0,0,0,0,26,23,0,0,0,0,11,3,0,0,0,0,0,0,28,1,0,0,0,0,0,1] >;

C7⋊D28 in GAP, Magma, Sage, TeX

C_7\rtimes D_{28}
% in TeX

G:=Group("C7:D28");
// GroupNames label

G:=SmallGroup(392,21);
// by ID

G=gap.SmallGroup(392,21);
# by ID

G:=PCGroup([5,-2,-2,-2,-7,-7,61,26,488,8404]);
// Polycyclic

G:=Group<a,b,c|a^7=b^28=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7⋊D28 in TeX

׿
×
𝔽