metabelian, supersoluble, monomial
Aliases: C7⋊2D28, Dic7⋊D7, C72⋊3D4, D14⋊2D7, C14.4D14, C2.4D72, (D7×C14)⋊2C2, C7⋊1(C7⋊D4), (C7×Dic7)⋊1C2, (C7×C14).4C22, (C2×C7⋊D7)⋊1C2, SmallGroup(392,21)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C7⋊D28
G = < a,b,c | a7=b28=c2=1, bab-1=cac=a-1, cbc=b-1 >
(1 13 25 9 21 5 17)(2 18 6 22 10 26 14)(3 15 27 11 23 7 19)(4 20 8 24 12 28 16)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)
(1 7)(2 6)(3 5)(8 28)(9 27)(10 26)(11 25)(12 24)(13 23)(14 22)(15 21)(16 20)(17 19)
G:=sub<Sym(28)| (1,13,25,9,21,5,17)(2,18,6,22,10,26,14)(3,15,27,11,23,7,19)(4,20,8,24,12,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19)>;
G:=Group( (1,13,25,9,21,5,17)(2,18,6,22,10,26,14)(3,15,27,11,23,7,19)(4,20,8,24,12,28,16), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28), (1,7)(2,6)(3,5)(8,28)(9,27)(10,26)(11,25)(12,24)(13,23)(14,22)(15,21)(16,20)(17,19) );
G=PermutationGroup([[(1,13,25,9,21,5,17),(2,18,6,22,10,26,14),(3,15,27,11,23,7,19),(4,20,8,24,12,28,16)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)], [(1,7),(2,6),(3,5),(8,28),(9,27),(10,26),(11,25),(12,24),(13,23),(14,22),(15,21),(16,20),(17,19)]])
G:=TransitiveGroup(28,50);
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 4 | 7A | ··· | 7F | 7G | ··· | 7O | 14A | ··· | 14F | 14G | ··· | 14O | 14P | ··· | 14U | 28A | ··· | 28F |
order | 1 | 2 | 2 | 2 | 4 | 7 | ··· | 7 | 7 | ··· | 7 | 14 | ··· | 14 | 14 | ··· | 14 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | 14 | 98 | 14 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 14 | ··· | 14 | 14 | ··· | 14 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | D4 | D7 | D7 | D14 | D28 | C7⋊D4 | D72 | C7⋊D28 |
kernel | C7⋊D28 | C7×Dic7 | D7×C14 | C2×C7⋊D7 | C72 | Dic7 | D14 | C14 | C7 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 6 | 6 | 6 | 9 | 9 |
Matrix representation of C7⋊D28 ►in GL6(𝔽29)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 21 | 18 | 0 | 0 |
0 | 0 | 19 | 26 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
21 | 1 | 0 | 0 | 0 | 0 |
20 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 11 | 0 | 0 |
0 | 0 | 23 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 27 |
0 | 0 | 0 | 0 | 1 | 1 |
0 | 19 | 0 | 0 | 0 | 0 |
26 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 26 | 11 | 0 | 0 |
0 | 0 | 23 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 1 | 1 |
G:=sub<GL(6,GF(29))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,21,19,0,0,0,0,18,26,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[21,20,0,0,0,0,1,1,0,0,0,0,0,0,26,23,0,0,0,0,11,3,0,0,0,0,0,0,28,1,0,0,0,0,27,1],[0,26,0,0,0,0,19,0,0,0,0,0,0,0,26,23,0,0,0,0,11,3,0,0,0,0,0,0,28,1,0,0,0,0,0,1] >;
C7⋊D28 in GAP, Magma, Sage, TeX
C_7\rtimes D_{28}
% in TeX
G:=Group("C7:D28");
// GroupNames label
G:=SmallGroup(392,21);
// by ID
G=gap.SmallGroup(392,21);
# by ID
G:=PCGroup([5,-2,-2,-2,-7,-7,61,26,488,8404]);
// Polycyclic
G:=Group<a,b,c|a^7=b^28=c^2=1,b*a*b^-1=c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations
Export