Copied to
clipboard

G = D7xC28order 392 = 23·72

Direct product of C28 and D7

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: D7xC28, C28:2C14, D14.C14, Dic7:2C14, C14.18D14, (C7xC28):3C2, C7:1(C2xC28), C72:4(C2xC4), C2.1(D7xC14), C14.2(C2xC14), (C7xDic7):5C2, (D7xC14).2C2, (C7xC14).7C22, SmallGroup(392,24)

Series: Derived Chief Lower central Upper central

C1C7 — D7xC28
C1C7C14C7xC14D7xC14 — D7xC28
C7 — D7xC28
C1C28

Generators and relations for D7xC28
 G = < a,b,c | a28=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 110 in 41 conjugacy classes, 22 normal (18 characteristic)
Quotients: C1, C2, C4, C22, C7, C2xC4, D7, C14, C28, D14, C2xC14, C4xD7, C2xC28, C7xD7, D7xC14, D7xC28
7C2
7C2
2C7
2C7
2C7
7C22
7C4
2C14
2C14
2C14
7C14
7C14
7C2xC4
2C28
2C28
2C28
7C2xC14
7C28
7C2xC28

Smallest permutation representation of D7xC28
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 9 17 25 5 13 21)(2 10 18 26 6 14 22)(3 11 19 27 7 15 23)(4 12 20 28 8 16 24)(29 49 41 33 53 45 37)(30 50 42 34 54 46 38)(31 51 43 35 55 47 39)(32 52 44 36 56 48 40)
(1 45)(2 46)(3 47)(4 48)(5 49)(6 50)(7 51)(8 52)(9 53)(10 54)(11 55)(12 56)(13 29)(14 30)(15 31)(16 32)(17 33)(18 34)(19 35)(20 36)(21 37)(22 38)(23 39)(24 40)(25 41)(26 42)(27 43)(28 44)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,9,17,25,5,13,21)(2,10,18,26,6,14,22)(3,11,19,27,7,15,23)(4,12,20,28,8,16,24)(29,49,41,33,53,45,37)(30,50,42,34,54,46,38)(31,51,43,35,55,47,39)(32,52,44,36,56,48,40), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,9,17,25,5,13,21)(2,10,18,26,6,14,22)(3,11,19,27,7,15,23)(4,12,20,28,8,16,24)(29,49,41,33,53,45,37)(30,50,42,34,54,46,38)(31,51,43,35,55,47,39)(32,52,44,36,56,48,40), (1,45)(2,46)(3,47)(4,48)(5,49)(6,50)(7,51)(8,52)(9,53)(10,54)(11,55)(12,56)(13,29)(14,30)(15,31)(16,32)(17,33)(18,34)(19,35)(20,36)(21,37)(22,38)(23,39)(24,40)(25,41)(26,42)(27,43)(28,44) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,9,17,25,5,13,21),(2,10,18,26,6,14,22),(3,11,19,27,7,15,23),(4,12,20,28,8,16,24),(29,49,41,33,53,45,37),(30,50,42,34,54,46,38),(31,51,43,35,55,47,39),(32,52,44,36,56,48,40)], [(1,45),(2,46),(3,47),(4,48),(5,49),(6,50),(7,51),(8,52),(9,53),(10,54),(11,55),(12,56),(13,29),(14,30),(15,31),(16,32),(17,33),(18,34),(19,35),(20,36),(21,37),(22,38),(23,39),(24,40),(25,41),(26,42),(27,43),(28,44)]])

140 conjugacy classes

class 1 2A2B2C4A4B4C4D7A···7F7G···7AA14A···14F14G···14AA14AB···14AM28A···28L28M···28BB28BC···28BN
order122244447···77···714···1414···1414···1428···2828···2828···28
size117711771···12···21···12···27···71···12···27···7

140 irreducible representations

dim1111111111222222
type++++++
imageC1C2C2C2C4C7C14C14C14C28D7D14C4xD7C7xD7D7xC14D7xC28
kernelD7xC28C7xDic7C7xC28D7xC14C7xD7C4xD7Dic7C28D14D7C28C14C7C4C2C1
# reps11114666624336181836

Matrix representation of D7xC28 in GL2(F29) generated by

150
015
,
1914
1128
,
10
1128
G:=sub<GL(2,GF(29))| [15,0,0,15],[19,11,14,28],[1,11,0,28] >;

D7xC28 in GAP, Magma, Sage, TeX

D_7\times C_{28}
% in TeX

G:=Group("D7xC28");
// GroupNames label

G:=SmallGroup(392,24);
// by ID

G=gap.SmallGroup(392,24);
# by ID

G:=PCGroup([5,-2,-2,-7,-2,-7,146,8404]);
// Polycyclic

G:=Group<a,b,c|a^28=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D7xC28 in TeX

׿
x
:
Z
F
o
wr
Q
<