Extensions 1→N→G→Q→1 with N=C5×Dic10 and Q=C2

Direct product G=N×Q with N=C5×Dic10 and Q=C2
dρLabelID
C10×Dic1080C10xDic10400,181

Semidirect products G=N:Q with N=C5×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic10)⋊1C2 = D20.D5φ: C2/C1C2 ⊆ Out C5×Dic10804(C5xDic10):1C2400,66
(C5×Dic10)⋊2C2 = C524SD16φ: C2/C1C2 ⊆ Out C5×Dic10404+(C5xDic10):2C2400,68
(C5×Dic10)⋊3C2 = C5×D4.D5φ: C2/C1C2 ⊆ Out C5×Dic10404(C5xDic10):3C2400,88
(C5×Dic10)⋊4C2 = D5×Dic10φ: C2/C1C2 ⊆ Out C5×Dic10804-(C5xDic10):4C2400,163
(C5×Dic10)⋊5C2 = D20⋊D5φ: C2/C1C2 ⊆ Out C5×Dic10404(C5xDic10):5C2400,165
(C5×Dic10)⋊6C2 = Dic10⋊D5φ: C2/C1C2 ⊆ Out C5×Dic10404(C5xDic10):6C2400,166
(C5×Dic10)⋊7C2 = Dic105D5φ: C2/C1C2 ⊆ Out C5×Dic10404+(C5xDic10):7C2400,168
(C5×Dic10)⋊8C2 = C5×D42D5φ: C2/C1C2 ⊆ Out C5×Dic10404(C5xDic10):8C2400,186
(C5×Dic10)⋊9C2 = C5×Q8×D5φ: C2/C1C2 ⊆ Out C5×Dic10804(C5xDic10):9C2400,187
(C5×Dic10)⋊10C2 = C5×C40⋊C2φ: C2/C1C2 ⊆ Out C5×Dic10802(C5xDic10):10C2400,78
(C5×Dic10)⋊11C2 = C5×C4○D20φ: trivial image402(C5xDic10):11C2400,184

Non-split extensions G=N.Q with N=C5×Dic10 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5×Dic10).1C2 = C522Q16φ: C2/C1C2 ⊆ Out C5×Dic10804(C5xDic10).1C2400,69
(C5×Dic10).2C2 = C523Q16φ: C2/C1C2 ⊆ Out C5×Dic10804-(C5xDic10).2C2400,70
(C5×Dic10).3C2 = C5×C5⋊Q16φ: C2/C1C2 ⊆ Out C5×Dic10804(C5xDic10).3C2400,90
(C5×Dic10).4C2 = C5×Dic20φ: C2/C1C2 ⊆ Out C5×Dic10802(C5xDic10).4C2400,80

׿
×
𝔽