Copied to
clipboard

G = Dic10⋊D5order 400 = 24·52

4th semidirect product of Dic10 and D5 acting via D5/C5=C2

metabelian, supersoluble, monomial

Aliases: Dic104D5, C20.23D10, Dic5.2D10, C4.12D52, C5⋊D52Q8, C51(Q8×D5), C523(C2×Q8), C522Q83C2, (C5×Dic10)⋊6C2, (C5×C10).4C23, C10.4(C22×D5), (C5×C20).19C22, Dic52D5.1C2, (C5×Dic5).3C22, C526C4.10C22, C2.7(C2×D52), (C4×C5⋊D5).1C2, (C2×C5⋊D5).13C22, SmallGroup(400,166)

Series: Derived Chief Lower central Upper central

C1C5×C10 — Dic10⋊D5
C1C5C52C5×C10C5×Dic5Dic52D5 — Dic10⋊D5
C52C5×C10 — Dic10⋊D5
C1C2C4

Generators and relations for Dic10⋊D5
 G = < a,b,c,d | a20=c5=d2=1, b2=a10, bab-1=a-1, ac=ca, dad=a9, bc=cb, bd=db, dcd=c-1 >

Subgroups: 556 in 92 conjugacy classes, 34 normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2×C4, Q8, D5, C10, C10, C2×Q8, Dic5, Dic5, C20, C20, D10, C52, Dic10, Dic10, C4×D5, C5×Q8, C5⋊D5, C5×C10, Q8×D5, C5×Dic5, C526C4, C5×C20, C2×C5⋊D5, Dic52D5, C522Q8, C5×Dic10, C4×C5⋊D5, Dic10⋊D5
Quotients: C1, C2, C22, Q8, C23, D5, C2×Q8, D10, C22×D5, Q8×D5, D52, C2×D52, Dic10⋊D5

Smallest permutation representation of Dic10⋊D5
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 25 11 35)(2 24 12 34)(3 23 13 33)(4 22 14 32)(5 21 15 31)(6 40 16 30)(7 39 17 29)(8 38 18 28)(9 37 19 27)(10 36 20 26)
(1 5 9 13 17)(2 6 10 14 18)(3 7 11 15 19)(4 8 12 16 20)(21 37 33 29 25)(22 38 34 30 26)(23 39 35 31 27)(24 40 36 32 28)
(1 17)(2 6)(3 15)(5 13)(7 11)(8 20)(10 18)(12 16)(21 33)(23 31)(24 40)(25 29)(26 38)(28 36)(30 34)(35 39)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,17)(2,6)(3,15)(5,13)(7,11)(8,20)(10,18)(12,16)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,25,11,35)(2,24,12,34)(3,23,13,33)(4,22,14,32)(5,21,15,31)(6,40,16,30)(7,39,17,29)(8,38,18,28)(9,37,19,27)(10,36,20,26), (1,5,9,13,17)(2,6,10,14,18)(3,7,11,15,19)(4,8,12,16,20)(21,37,33,29,25)(22,38,34,30,26)(23,39,35,31,27)(24,40,36,32,28), (1,17)(2,6)(3,15)(5,13)(7,11)(8,20)(10,18)(12,16)(21,33)(23,31)(24,40)(25,29)(26,38)(28,36)(30,34)(35,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,25,11,35),(2,24,12,34),(3,23,13,33),(4,22,14,32),(5,21,15,31),(6,40,16,30),(7,39,17,29),(8,38,18,28),(9,37,19,27),(10,36,20,26)], [(1,5,9,13,17),(2,6,10,14,18),(3,7,11,15,19),(4,8,12,16,20),(21,37,33,29,25),(22,38,34,30,26),(23,39,35,31,27),(24,40,36,32,28)], [(1,17),(2,6),(3,15),(5,13),(7,11),(8,20),(10,18),(12,16),(21,33),(23,31),(24,40),(25,29),(26,38),(28,36),(30,34),(35,39)]])

46 conjugacy classes

class 1 2A2B2C4A4B4C4D4E4F5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H20A···20L20M···20T
order122244444455555555101010101010101020···2020···20
size1125252101010105022224444222244444···420···20

46 irreducible representations

dim1111122224444
type+++++-+++-++
imageC1C2C2C2C2Q8D5D10D10Q8×D5D52C2×D52Dic10⋊D5
kernelDic10⋊D5Dic52D5C522Q8C5×Dic10C4×C5⋊D5C5⋊D5Dic10Dic5C20C5C4C2C1
# reps1222124844448

Matrix representation of Dic10⋊D5 in GL6(𝔽41)

34400000
100000
0004000
001000
0000400
0000040
,
4000000
710000
00151500
00152600
000010
000001
,
100000
010000
001000
000100
0000040
000016
,
100000
34400000
0040000
0004000
000016
0000040

G:=sub<GL(6,GF(41))| [34,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,7,0,0,0,0,0,1,0,0,0,0,0,0,15,15,0,0,0,0,15,26,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,40,6],[1,34,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,6,40] >;

Dic10⋊D5 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes D_5
% in TeX

G:=Group("Dic10:D5");
// GroupNames label

G:=SmallGroup(400,166);
// by ID

G=gap.SmallGroup(400,166);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,48,55,218,116,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^5=d^2=1,b^2=a^10,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^9,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽