d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3×C66 | 132 | 2 | S3xC66 | 396,26 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C66⋊1S3 = C2×C3⋊D33 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | C66:1S3 | 396,29 | |
C66⋊2S3 = C6×D33 | φ: S3/C3 → C2 ⊆ Aut C66 | 132 | 2 | C66:2S3 | 396,27 |
C66⋊3S3 = C3⋊S3×C22 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | C66:3S3 | 396,28 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C66.1S3 = Dic99 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | 2- | C66.1S3 | 396,3 |
C66.2S3 = D198 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | 2+ | C66.2S3 | 396,9 |
C66.3S3 = C3⋊Dic33 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | C66.3S3 | 396,15 | |
C66.4S3 = C3×Dic33 | φ: S3/C3 → C2 ⊆ Aut C66 | 132 | 2 | C66.4S3 | 396,13 |
C66.5S3 = C11×Dic9 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | 2 | C66.5S3 | 396,1 |
C66.6S3 = D9×C22 | φ: S3/C3 → C2 ⊆ Aut C66 | 198 | 2 | C66.6S3 | 396,8 |
C66.7S3 = C11×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C66 | 396 | C66.7S3 | 396,14 | |
C66.8S3 = Dic3×C33 | central extension (φ=1) | 132 | 2 | C66.8S3 | 396,12 |