Extensions 1→N→G→Q→1 with N=C66 and Q=S3

Direct product G=N×Q with N=C66 and Q=S3
dρLabelID
S3×C661322S3xC66396,26

Semidirect products G=N:Q with N=C66 and Q=S3
extensionφ:Q→Aut NdρLabelID
C661S3 = C2×C3⋊D33φ: S3/C3C2 ⊆ Aut C66198C66:1S3396,29
C662S3 = C6×D33φ: S3/C3C2 ⊆ Aut C661322C66:2S3396,27
C663S3 = C3⋊S3×C22φ: S3/C3C2 ⊆ Aut C66198C66:3S3396,28

Non-split extensions G=N.Q with N=C66 and Q=S3
extensionφ:Q→Aut NdρLabelID
C66.1S3 = Dic99φ: S3/C3C2 ⊆ Aut C663962-C66.1S3396,3
C66.2S3 = D198φ: S3/C3C2 ⊆ Aut C661982+C66.2S3396,9
C66.3S3 = C3⋊Dic33φ: S3/C3C2 ⊆ Aut C66396C66.3S3396,15
C66.4S3 = C3×Dic33φ: S3/C3C2 ⊆ Aut C661322C66.4S3396,13
C66.5S3 = C11×Dic9φ: S3/C3C2 ⊆ Aut C663962C66.5S3396,1
C66.6S3 = D9×C22φ: S3/C3C2 ⊆ Aut C661982C66.6S3396,8
C66.7S3 = C11×C3⋊Dic3φ: S3/C3C2 ⊆ Aut C66396C66.7S3396,14
C66.8S3 = Dic3×C33central extension (φ=1)1322C66.8S3396,12

׿
×
𝔽