Extensions 1→N→G→Q→1 with N=C4×D5 and Q=D5

Direct product G=N×Q with N=C4×D5 and Q=D5
dρLabelID
C4×D52404C4xD5^2400,169

Semidirect products G=N:Q with N=C4×D5 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×D5)⋊1D5 = D205D5φ: D5/C5C2 ⊆ Out C4×D5804-(C4xD5):1D5400,164
(C4×D5)⋊2D5 = Dic105D5φ: D5/C5C2 ⊆ Out C4×D5404+(C4xD5):2D5400,168
(C4×D5)⋊3D5 = D5×D20φ: D5/C5C2 ⊆ Out C4×D5404+(C4xD5):3D5400,170
(C4×D5)⋊4D5 = D10.9D10φ: D5/C5C2 ⊆ Out C4×D5404(C4xD5):4D5400,167

Non-split extensions G=N.Q with N=C4×D5 and Q=D5
extensionφ:Q→Out NdρLabelID
(C4×D5).1D5 = D5×Dic10φ: D5/C5C2 ⊆ Out C4×D5804-(C4xD5).1D5400,163
(C4×D5).2D5 = C20.30D10φ: D5/C5C2 ⊆ Out C4×D5804(C4xD5).2D5400,62
(C4×D5).3D5 = C20.12F5φ: D5/C5C2 ⊆ Out C4×D5804(C4xD5).3D5400,143
(C4×D5).4D5 = C205F5φ: D5/C5C2 ⊆ Out C4×D5804(C4xD5).4D5400,145
(C4×D5).5D5 = C20.14F5φ: D5/C5C2 ⊆ Out C4×D5804(C4xD5).5D5400,142
(C4×D5).6D5 = C4×D5.D5φ: D5/C5C2 ⊆ Out C4×D5804(C4xD5).6D5400,144
(C4×D5).7D5 = D5×C52C8φ: trivial image804(C4xD5).7D5400,60

׿
×
𝔽