Copied to
clipboard

G = D5×C52C8order 400 = 24·52

Direct product of D5 and C52C8

direct product, metabelian, supersoluble, monomial, A-group

Aliases: D5×C52C8, C20.28D10, D10.4Dic5, Dic5.4Dic5, C55(C8×D5), C4.13D52, (C5×D5)⋊4C8, C529(C2×C8), (C4×D5).7D5, C527C86C2, (D5×C20).6C2, (D5×C10).5C4, C10.23(C4×D5), C2.1(D5×Dic5), (C5×Dic5).8C4, C10.8(C2×Dic5), (C5×C20).27C22, C53(C2×C52C8), (C5×C52C8)⋊4C2, (C5×C10).41(C2×C4), SmallGroup(400,60)

Series: Derived Chief Lower central Upper central

C1C52 — D5×C52C8
C1C5C52C5×C10C5×C20D5×C20 — D5×C52C8
C52 — D5×C52C8
C1C4

Generators and relations for D5×C52C8
 G = < a,b,c,d | a5=b2=c5=d8=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

5C2
5C2
2C5
2C5
5C22
5C4
2C10
2C10
5C10
5C10
5C8
5C2×C4
25C8
2C20
2C20
5C2×C10
5C20
25C2×C8
5C52C8
5C40
5C52C8
5C2×C20
10C52C8
10C52C8
5C8×D5
5C2×C52C8

Smallest permutation representation of D5×C52C8
On 80 points
Generators in S80
(1 59 71 44 53)(2 60 72 45 54)(3 61 65 46 55)(4 62 66 47 56)(5 63 67 48 49)(6 64 68 41 50)(7 57 69 42 51)(8 58 70 43 52)(9 35 19 29 76)(10 36 20 30 77)(11 37 21 31 78)(12 38 22 32 79)(13 39 23 25 80)(14 40 24 26 73)(15 33 17 27 74)(16 34 18 28 75)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 57)(16 58)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(25 48)(26 41)(27 42)(28 43)(29 44)(30 45)(31 46)(32 47)(65 78)(66 79)(67 80)(68 73)(69 74)(70 75)(71 76)(72 77)
(1 71 53 59 44)(2 45 60 54 72)(3 65 55 61 46)(4 47 62 56 66)(5 67 49 63 48)(6 41 64 50 68)(7 69 51 57 42)(8 43 58 52 70)(9 29 35 76 19)(10 20 77 36 30)(11 31 37 78 21)(12 22 79 38 32)(13 25 39 80 23)(14 24 73 40 26)(15 27 33 74 17)(16 18 75 34 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (1,59,71,44,53)(2,60,72,45,54)(3,61,65,46,55)(4,62,66,47,56)(5,63,67,48,49)(6,64,68,41,50)(7,57,69,42,51)(8,58,70,43,52)(9,35,19,29,76)(10,36,20,30,77)(11,37,21,31,78)(12,38,22,32,79)(13,39,23,25,80)(14,40,24,26,73)(15,33,17,27,74)(16,34,18,28,75), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(65,78)(66,79)(67,80)(68,73)(69,74)(70,75)(71,76)(72,77), (1,71,53,59,44)(2,45,60,54,72)(3,65,55,61,46)(4,47,62,56,66)(5,67,49,63,48)(6,41,64,50,68)(7,69,51,57,42)(8,43,58,52,70)(9,29,35,76,19)(10,20,77,36,30)(11,31,37,78,21)(12,22,79,38,32)(13,25,39,80,23)(14,24,73,40,26)(15,27,33,74,17)(16,18,75,34,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (1,59,71,44,53)(2,60,72,45,54)(3,61,65,46,55)(4,62,66,47,56)(5,63,67,48,49)(6,64,68,41,50)(7,57,69,42,51)(8,58,70,43,52)(9,35,19,29,76)(10,36,20,30,77)(11,37,21,31,78)(12,38,22,32,79)(13,39,23,25,80)(14,40,24,26,73)(15,33,17,27,74)(16,34,18,28,75), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,57)(16,58)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,48)(26,41)(27,42)(28,43)(29,44)(30,45)(31,46)(32,47)(65,78)(66,79)(67,80)(68,73)(69,74)(70,75)(71,76)(72,77), (1,71,53,59,44)(2,45,60,54,72)(3,65,55,61,46)(4,47,62,56,66)(5,67,49,63,48)(6,41,64,50,68)(7,69,51,57,42)(8,43,58,52,70)(9,29,35,76,19)(10,20,77,36,30)(11,31,37,78,21)(12,22,79,38,32)(13,25,39,80,23)(14,24,73,40,26)(15,27,33,74,17)(16,18,75,34,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(1,59,71,44,53),(2,60,72,45,54),(3,61,65,46,55),(4,62,66,47,56),(5,63,67,48,49),(6,64,68,41,50),(7,57,69,42,51),(8,58,70,43,52),(9,35,19,29,76),(10,36,20,30,77),(11,37,21,31,78),(12,38,22,32,79),(13,39,23,25,80),(14,40,24,26,73),(15,33,17,27,74),(16,34,18,28,75)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,57),(16,58),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(25,48),(26,41),(27,42),(28,43),(29,44),(30,45),(31,46),(32,47),(65,78),(66,79),(67,80),(68,73),(69,74),(70,75),(71,76),(72,77)], [(1,71,53,59,44),(2,45,60,54,72),(3,65,55,61,46),(4,47,62,56,66),(5,67,49,63,48),(6,41,64,50,68),(7,69,51,57,42),(8,43,58,52,70),(9,29,35,76,19),(10,20,77,36,30),(11,31,37,78,21),(12,22,79,38,32),(13,25,39,80,23),(14,24,73,40,26),(15,27,33,74,17),(16,18,75,34,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

64 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B5C5D5E5F5G5H8A8B8C8D8E8F8G8H10A10B10C10D10E10F10G10H10I10J10K10L20A···20H20I···20P20Q20R20S20T40A···40H
order12224444555555558888888810101010101010101010101020···2020···202020202040···40
size115511552222444455552525252522224444101010102···24···41010101010···10

64 irreducible representations

dim111111122222222444
type++++++-+-+-
imageC1C2C2C2C4C4C8D5D5Dic5D10Dic5C52C8C4×D5C8×D5D52D5×Dic5D5×C52C8
kernelD5×C52C8C5×C52C8C527C8D5×C20C5×Dic5D5×C10C5×D5C52C8C4×D5Dic5C20D10D5C10C5C4C2C1
# reps111122822242848448

Matrix representation of D5×C52C8 in GL4(𝔽41) generated by

1000
0100
003440
0010
,
1000
0100
0071
003434
,
34100
40000
0010
0001
,
02700
27000
0090
0009
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,34,1,0,0,40,0],[1,0,0,0,0,1,0,0,0,0,7,34,0,0,1,34],[34,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[0,27,0,0,27,0,0,0,0,0,9,0,0,0,0,9] >;

D5×C52C8 in GAP, Magma, Sage, TeX

D_5\times C_5\rtimes_2C_8
% in TeX

G:=Group("D5xC5:2C8");
// GroupNames label

G:=SmallGroup(400,60);
// by ID

G=gap.SmallGroup(400,60);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,31,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^5=d^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×C52C8 in TeX

׿
×
𝔽