Copied to
clipboard

G = C20.30D10order 400 = 24·52

4th non-split extension by C20 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial

Aliases: C20.30D10, C529M4(2), D10.1Dic5, Dic5.1Dic5, C4.15D52, C52C84D5, (C4×D5).2D5, C55(C8⋊D5), C527C87C2, (D5×C10).6C4, (D5×C20).1C2, C10.24(C4×D5), C2.3(D5×Dic5), C53(C4.Dic5), (C5×Dic5).6C4, C10.9(C2×Dic5), (C5×C20).29C22, (C5×C52C8)⋊6C2, (C5×C10).43(C2×C4), SmallGroup(400,62)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C20.30D10
C1C5C52C5×C10C5×C20D5×C20 — C20.30D10
C52C5×C10 — C20.30D10
C1C4

Generators and relations for C20.30D10
 G = < a,b,c | a20=1, b10=a5, c2=a15, bab-1=cac-1=a9, cbc-1=a10b9 >

10C2
2C5
2C5
5C4
5C22
2C10
2C10
2D5
10C10
5C8
5C2×C4
25C8
2C20
2C20
5C20
5C2×C10
2C5×D5
25M4(2)
5C40
5C52C8
5C2×C20
5C52C8
10C52C8
10C52C8
5C8⋊D5
5C4.Dic5

Smallest permutation representation of C20.30D10
On 80 points
Generators in S80
(1 35 29 23 17 11 5 39 33 27 21 15 9 3 37 31 25 19 13 7)(2 28 14 40 26 12 38 24 10 36 22 8 34 20 6 32 18 4 30 16)(41 75 69 63 57 51 45 79 73 67 61 55 49 43 77 71 65 59 53 47)(42 68 54 80 66 52 78 64 50 76 62 48 74 60 46 72 58 44 70 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 71 31 61 21 51 11 41)(2 60 32 50 22 80 12 70)(3 49 33 79 23 69 13 59)(4 78 34 68 24 58 14 48)(5 67 35 57 25 47 15 77)(6 56 36 46 26 76 16 66)(7 45 37 75 27 65 17 55)(8 74 38 64 28 54 18 44)(9 63 39 53 29 43 19 73)(10 52 40 42 30 72 20 62)

G:=sub<Sym(80)| (1,35,29,23,17,11,5,39,33,27,21,15,9,3,37,31,25,19,13,7)(2,28,14,40,26,12,38,24,10,36,22,8,34,20,6,32,18,4,30,16)(41,75,69,63,57,51,45,79,73,67,61,55,49,43,77,71,65,59,53,47)(42,68,54,80,66,52,78,64,50,76,62,48,74,60,46,72,58,44,70,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,31,61,21,51,11,41)(2,60,32,50,22,80,12,70)(3,49,33,79,23,69,13,59)(4,78,34,68,24,58,14,48)(5,67,35,57,25,47,15,77)(6,56,36,46,26,76,16,66)(7,45,37,75,27,65,17,55)(8,74,38,64,28,54,18,44)(9,63,39,53,29,43,19,73)(10,52,40,42,30,72,20,62)>;

G:=Group( (1,35,29,23,17,11,5,39,33,27,21,15,9,3,37,31,25,19,13,7)(2,28,14,40,26,12,38,24,10,36,22,8,34,20,6,32,18,4,30,16)(41,75,69,63,57,51,45,79,73,67,61,55,49,43,77,71,65,59,53,47)(42,68,54,80,66,52,78,64,50,76,62,48,74,60,46,72,58,44,70,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,71,31,61,21,51,11,41)(2,60,32,50,22,80,12,70)(3,49,33,79,23,69,13,59)(4,78,34,68,24,58,14,48)(5,67,35,57,25,47,15,77)(6,56,36,46,26,76,16,66)(7,45,37,75,27,65,17,55)(8,74,38,64,28,54,18,44)(9,63,39,53,29,43,19,73)(10,52,40,42,30,72,20,62) );

G=PermutationGroup([[(1,35,29,23,17,11,5,39,33,27,21,15,9,3,37,31,25,19,13,7),(2,28,14,40,26,12,38,24,10,36,22,8,34,20,6,32,18,4,30,16),(41,75,69,63,57,51,45,79,73,67,61,55,49,43,77,71,65,59,53,47),(42,68,54,80,66,52,78,64,50,76,62,48,74,60,46,72,58,44,70,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,71,31,61,21,51,11,41),(2,60,32,50,22,80,12,70),(3,49,33,79,23,69,13,59),(4,78,34,68,24,58,14,48),(5,67,35,57,25,47,15,77),(6,56,36,46,26,76,16,66),(7,45,37,75,27,65,17,55),(8,74,38,64,28,54,18,44),(9,63,39,53,29,43,19,73),(10,52,40,42,30,72,20,62)]])

58 conjugacy classes

class 1 2A2B4A4B4C5A5B5C5D5E5F5G5H8A8B8C8D10A10B10C10D10E10F10G10H10I10J10K10L20A···20H20I···20P20Q20R20S20T40A···40H
order12244455555555888810101010101010101010101020···2020···202020202040···40
size11101110222244441010505022224444101010102···24···41010101010···10

58 irreducible representations

dim111111222222222444
type++++++-+-+-
imageC1C2C2C2C4C4D5D5M4(2)Dic5D10Dic5C4×D5C8⋊D5C4.Dic5D52D5×Dic5C20.30D10
kernelC20.30D10C5×C52C8C527C8D5×C20C5×Dic5D5×C10C52C8C4×D5C52Dic5C20D10C10C5C5C4C2C1
# reps111122222242488448

Matrix representation of C20.30D10 in GL4(𝔽41) generated by

0900
321300
00400
00040
,
3000
183800
003219
002222
,
281800
221300
00922
00032
G:=sub<GL(4,GF(41))| [0,32,0,0,9,13,0,0,0,0,40,0,0,0,0,40],[3,18,0,0,0,38,0,0,0,0,32,22,0,0,19,22],[28,22,0,0,18,13,0,0,0,0,9,0,0,0,22,32] >;

C20.30D10 in GAP, Magma, Sage, TeX

C_{20}._{30}D_{10}
% in TeX

G:=Group("C20.30D10");
// GroupNames label

G:=SmallGroup(400,62);
// by ID

G=gap.SmallGroup(400,62);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,121,31,50,970,11525]);
// Polycyclic

G:=Group<a,b,c|a^20=1,b^10=a^5,c^2=a^15,b*a*b^-1=c*a*c^-1=a^9,c*b*c^-1=a^10*b^9>;
// generators/relations

Export

Subgroup lattice of C20.30D10 in TeX

׿
×
𝔽