Copied to
clipboard

G = A4×C34order 408 = 23·3·17

Direct product of C34 and A4

direct product, metabelian, soluble, monomial, A-group

Aliases: A4×C34, C23⋊C51, C22⋊C102, (C22×C34)⋊C3, (C2×C34)⋊2C6, SmallGroup(408,42)

Series: Derived Chief Lower central Upper central

C1C22 — A4×C34
C1C22C2×C34A4×C17 — A4×C34
C22 — A4×C34
C1C34

Generators and relations for A4×C34
 G = < a,b,c,d | a34=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >

3C2
3C2
4C3
3C22
3C22
4C6
3C34
3C34
4C51
3C2×C34
3C2×C34
4C102

Smallest permutation representation of A4×C34
On 102 points
Generators in S102
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34)(35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68)(69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(35 52)(36 53)(37 54)(38 55)(39 56)(40 57)(41 58)(42 59)(43 60)(44 61)(45 62)(46 63)(47 64)(48 65)(49 66)(50 67)(51 68)
(1 18)(2 19)(3 20)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 33)(17 34)(69 86)(70 87)(71 88)(72 89)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 97)(81 98)(82 99)(83 100)(84 101)(85 102)
(1 93 39)(2 94 40)(3 95 41)(4 96 42)(5 97 43)(6 98 44)(7 99 45)(8 100 46)(9 101 47)(10 102 48)(11 69 49)(12 70 50)(13 71 51)(14 72 52)(15 73 53)(16 74 54)(17 75 55)(18 76 56)(19 77 57)(20 78 58)(21 79 59)(22 80 60)(23 81 61)(24 82 62)(25 83 63)(26 84 64)(27 85 65)(28 86 66)(29 87 67)(30 88 68)(31 89 35)(32 90 36)(33 91 37)(34 92 38)

G:=sub<Sym(102)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102), (1,93,39)(2,94,40)(3,95,41)(4,96,42)(5,97,43)(6,98,44)(7,99,45)(8,100,46)(9,101,47)(10,102,48)(11,69,49)(12,70,50)(13,71,51)(14,72,52)(15,73,53)(16,74,54)(17,75,55)(18,76,56)(19,77,57)(20,78,58)(21,79,59)(22,80,60)(23,81,61)(24,82,62)(25,83,63)(26,84,64)(27,85,65)(28,86,66)(29,87,67)(30,88,68)(31,89,35)(32,90,36)(33,91,37)(34,92,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34)(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68)(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(35,52)(36,53)(37,54)(38,55)(39,56)(40,57)(41,58)(42,59)(43,60)(44,61)(45,62)(46,63)(47,64)(48,65)(49,66)(50,67)(51,68), (1,18)(2,19)(3,20)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,33)(17,34)(69,86)(70,87)(71,88)(72,89)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,97)(81,98)(82,99)(83,100)(84,101)(85,102), (1,93,39)(2,94,40)(3,95,41)(4,96,42)(5,97,43)(6,98,44)(7,99,45)(8,100,46)(9,101,47)(10,102,48)(11,69,49)(12,70,50)(13,71,51)(14,72,52)(15,73,53)(16,74,54)(17,75,55)(18,76,56)(19,77,57)(20,78,58)(21,79,59)(22,80,60)(23,81,61)(24,82,62)(25,83,63)(26,84,64)(27,85,65)(28,86,66)(29,87,67)(30,88,68)(31,89,35)(32,90,36)(33,91,37)(34,92,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34),(35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68),(69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(35,52),(36,53),(37,54),(38,55),(39,56),(40,57),(41,58),(42,59),(43,60),(44,61),(45,62),(46,63),(47,64),(48,65),(49,66),(50,67),(51,68)], [(1,18),(2,19),(3,20),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,33),(17,34),(69,86),(70,87),(71,88),(72,89),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,97),(81,98),(82,99),(83,100),(84,101),(85,102)], [(1,93,39),(2,94,40),(3,95,41),(4,96,42),(5,97,43),(6,98,44),(7,99,45),(8,100,46),(9,101,47),(10,102,48),(11,69,49),(12,70,50),(13,71,51),(14,72,52),(15,73,53),(16,74,54),(17,75,55),(18,76,56),(19,77,57),(20,78,58),(21,79,59),(22,80,60),(23,81,61),(24,82,62),(25,83,63),(26,84,64),(27,85,65),(28,86,66),(29,87,67),(30,88,68),(31,89,35),(32,90,36),(33,91,37),(34,92,38)]])

136 conjugacy classes

class 1 2A2B2C3A3B6A6B17A···17P34A···34P34Q···34AV51A···51AF102A···102AF
order1222336617···1734···3434···3451···51102···102
size113344441···11···13···34···44···4

136 irreducible representations

dim111111113333
type++++
imageC1C2C3C6C17C34C51C102A4C2×A4A4×C17A4×C34
kernelA4×C34A4×C17C22×C34C2×C34C2×A4A4C23C22C34C17C2C1
# reps112216163232111616

Matrix representation of A4×C34 in GL3(𝔽103) generated by

9400
0940
0094
,
10200
01020
2001
,
10200
310
00102
,
1001010
6631
81200
G:=sub<GL(3,GF(103))| [94,0,0,0,94,0,0,0,94],[102,0,20,0,102,0,0,0,1],[102,3,0,0,1,0,0,0,102],[100,66,81,101,3,20,0,1,0] >;

A4×C34 in GAP, Magma, Sage, TeX

A_4\times C_{34}
% in TeX

G:=Group("A4xC34");
// GroupNames label

G:=SmallGroup(408,42);
// by ID

G=gap.SmallGroup(408,42);
# by ID

G:=PCGroup([5,-2,-3,-17,-2,2,2048,3834]);
// Polycyclic

G:=Group<a,b,c,d|a^34=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations

Export

Subgroup lattice of A4×C34 in TeX

׿
×
𝔽